-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlearning_exps.py
187 lines (162 loc) · 5.15 KB
/
learning_exps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
Run this file for DROPL experiments.
"""
from drorl.dro import run_dro
import pickle
from drorl.types import (
OptimConfig,
OptMethod,
FitPiMethod,
FitOutcomeFnMethod,
AlphaUpdateMethod,
)
from dataclasses import replace
import numpy as np
from utils import adv_idx, set_global_seeds, DataFrameAggregator
import itertools
import logging
logging.basicConfig(
format="%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.INFO,
)
log = logging.getLogger(__name__)
## NOTE: toggle this to run baseline vs. CDR^2OPL.
run_name = "dro_baseline"
# run_name = "our_method"
max_iters = 500
num_seeds = 30
num_random_initializations = 1
dataset = "linear_5"
num_actions = 5
optimizer = "adam"
learning_rate = 0.01
mlp_hidden = [32]
mlp_temp = 1.0
learn_optim_config = dict(
learn_pi=True,
learn_mlp_hidden=mlp_hidden,
learn_mlp_temp=mlp_temp,
warmstart_mlp=False,
converge_criterion=1e-4,
num_consecutive_stops_needed=5,
max_iters=max_iters,
learn_mlp_epochs=1,
learn_mlp_batch_size=1024,
learn_mlp_lr=learning_rate,
learn_mlp_optimizer=optimizer,
learn_mlp_num_perturbations=9,
)
delta_list = [0.1, 0.2, 0.3]
n_list = [5000, 10000, 15000, 20000]
seed_list = range(num_seeds)
if run_name == "dro_baseline":
results_path = "pkls/xfit_snips.pkl"
args = {
"xfit_snips": OptimConfig(
alpha_update_method=AlphaUpdateMethod.IPS,
crossfit_num_folds=5,
fit_pihat_method=FitPiMethod.XGBOOST,
opt_method=OptMethod.GRADIENT_ASCENT,
),
}
else:
results_path = "pkls/cdr.pkl"
args = {
"cdr_gradient": OptimConfig(
alpha_update_method=AlphaUpdateMethod.LDR,
crossfit_num_folds=5,
fit_pihat_method=FitPiMethod.XGBOOST,
fit_outcome_fn_method=FitOutcomeFnMethod.RANDOM_FOREST_CONTINUUM,
# can use gradient since outcome function is open box, i.e. we can compute gradient
opt_method=OptMethod.GRADIENT_ASCENT,
),
}
df_agg = DataFrameAggregator(results_path)
def get_eval_results_for_policy(data, seed):
eval_delta_list = [0.1, 0.2, 0.3, 0.5]
## First evaluate regular reward
full_info_reward = (data.probs_mat * data.reward_mat).sum(1).mean()
ipw = adv_idx(data.probs_mat, data.a) / data.a_prob
ipw = ipw / ipw.mean()
snips_est_reward = (ipw * data.r).mean()
output_dict = {
"full_info_reward": full_info_reward,
"snips_est_reward": snips_est_reward,
}
for delta in eval_delta_list:
full_info_dro = run_dro(
data=data,
optim_config=OptimConfig(
seed=seed,
delta=delta,
alpha_update_method=AlphaUpdateMethod.FULL_INFO,
fit_pihat_method=None,
opt_method=OptMethod.GRADIENT_ASCENT,
converge_criterion=1e-6,
num_consecutive_stops_needed=20,
),
)
snips_dro = run_dro(
data=data,
optim_config=OptimConfig(
seed=seed,
delta=delta,
alpha_update_method=AlphaUpdateMethod.IPS,
fit_pihat_method=None,
opt_method=OptMethod.GRADIENT_ASCENT,
converge_criterion=1e-6,
num_consecutive_stops_needed=20,
),
)
output_dict.update(
{
f"full_info_{delta}_dro_reward": full_info_dro["phi_n"],
f"snips_{delta}_dro_reward": snips_dro["phi_n"],
f"full_info_{delta}_dro_alpha": full_info_dro["alpha"],
f"snips_{delta}_dro_alpha": snips_dro["alpha"],
}
)
return output_dict
for n, delta, seed in itertools.product(n_list, delta_list, seed_list):
test_data_path = f"data/{dataset}/{seed}/test.pkl"
with open(test_data_path, "rb") as f:
test_data = pickle.load(f)
data_path = f"data/{dataset}/{seed}/{n}.pkl"
with open(data_path, "rb") as f:
data = pickle.load(f)
for algo, optim_config in args.items():
df_dict = {
"delta": delta,
"n": n,
"seed": seed,
"algo": algo,
}
log.info(df_dict)
if df_agg.exists(df_dict):
continue
set_global_seeds(seed)
init_alpha = np.random.uniform(low=0.5, high=1.0)
log.info(f"init_alpha={init_alpha}")
out = run_dro(
data=data,
optim_config=replace(
optim_config,
init_alpha=init_alpha,
num_actions=num_actions,
seed=seed,
delta=delta,
**learn_optim_config,
),
)
policy = out["policy"]
train_obj = out["traj"][-1]["phi_n"]
# Evaluate
probs_mat = np.array(policy.probs(test_data.s))
eval_res = get_eval_results_for_policy(
data=replace(test_data, probs_mat=probs_mat),
seed=seed,
)
df_dict.update(eval_res)
df_dict["train_obj"] = train_obj
df_agg.append(df_dict)