-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_baseline_dbpedia_model.py
135 lines (116 loc) · 4.53 KB
/
train_baseline_dbpedia_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import datasets
import numpy as np
import torch
from sklearn.metrics import f1_score
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import wandb
NUM_EPOCHS = 5
BATCH_SIZE = 16
BASE_MODEL_NAME = "bert-base-cased"
LEARNING_RATE = 1e-5
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
wandb.init(project="fsdl21_bert_baseline", entity="kkoehncke")
def merge_title_with_content(example):
example["content"] = example["title"] + " " + example["content"]
return example
def encode(batch):
return tokenizer(
batch["content"],
add_special_tokens=True,
return_attention_mask=True,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="np",
)
dbpedia_dataset = datasets.load_dataset("dbpedia_14")
num_classes = dbpedia_dataset["train"].info.features["label"].num_classes
dbpedia_dataset = dbpedia_dataset.map(merge_title_with_content, num_proc=10)
dbpedia_dataset = dbpedia_dataset.rename_column("label", "labels")
dbpedia_dataset = dbpedia_dataset.map(encode, batched=True, num_proc=10)
dbpedia_dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "labels"])
# DEBUGGING - Splice dataset to use smaller number of samples
#
# train_dataloader = torch.utils.data.DataLoader(
# dbpedia_dataset["train"].select(
# list(
# np.random.randint(low=0, high=len(dbpedia_dataset["train"]) - 1, size=1000)
# )
# ),
# batch_size=BATCH_SIZE,
# shuffle=True,
# )
# test_dataloader = torch.utils.data.DataLoader(
# dbpedia_dataset["test"].select(
# list(np.random.randint(low=0, high=len(dbpedia_dataset["test"]) - 1, size=1000))
# ),
# batch_size=BATCH_SIZE,
# shuffle=False,
train_dataloader = torch.utils.data.DataLoader(
dbpedia_dataset["train"],
batch_size=BATCH_SIZE,
shuffle=True,
)
test_dataloader = torch.utils.data.DataLoader(
dbpedia_dataset["test"],
batch_size=BATCH_SIZE,
shuffle=False,
)
baseline_model = AutoModelForSequenceClassification.from_pretrained(
BASE_MODEL_NAME,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
# Modify linear layer to match number of classes
baseline_model.classifier = torch.nn.Linear(baseline_model.config.hidden_size, num_classes)
baseline_model.config.num_labels = num_classes
baseline_model.num_labels = num_classes
device = "cuda" if torch.cuda.is_available() else "cpu"
baseline_model.train().to(device)
optimizer = torch.optim.AdamW(params=baseline_model.parameters(), lr=LEARNING_RATE)
config = wandb.config
config.learning_rate = LEARNING_RATE
config.epochs = NUM_EPOCHS
config.batch_size = BATCH_SIZE
config.model_architecture = BASE_MODEL_NAME
wandb.watch(baseline_model)
# Training Loop
for epoch in range(NUM_EPOCHS):
progress_bar = tqdm(train_dataloader)
for iteration, batch in enumerate(progress_bar):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = baseline_model(**batch)
optimizer.zero_grad()
loss = outputs["loss"]
loss.backward()
torch.nn.utils.clip_grad_norm_(baseline_model.parameters(), 1.0)
optimizer.step()
if iteration % 10 == 0:
progress_bar.set_description(f"epoch {epoch} iteration {iteration}: train loss {loss.item():.5f}")
wandb.log({"train loss": loss.item()})
# Testing Loop
progress_bar = tqdm(test_dataloader)
baseline_model.eval()
Y_true = []
Y_predict = []
with torch.no_grad():
for iteration, batch in enumerate(progress_bar):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = baseline_model(**batch)
loss = outputs["loss"]
Y_predicted_probas_batch = torch.softmax(outputs["logits"], dim=1)
Y_predict_batch = torch.max(Y_predicted_probas_batch, dim=1)[1].data.cpu().numpy()
Y_true_batch = batch["labels"].data.cpu().numpy()
Y_true += Y_true_batch.tolist()
Y_predict += Y_predict_batch.tolist()
if iteration % 10 == 0:
progress_bar.set_description(f"epoch {epoch} iteration {iteration}: test loss {loss.item():.5f}")
wandb.log({"test loss": loss.item()})
f1_test_score = f1_score(Y_true, Y_predict, average="macro")
print(f"Test F1 Score for epoch {epoch}: {f1_test_score:.5f}")
wandb.log({"test F1": f1_test_score})
# Save network state dict
state_dict = baseline_model.state_dict()
torch.save(state_dict, "network.p")