Skip to content

Latest commit

 

History

History
45 lines (26 loc) · 971 Bytes

08_unsuperwised.md

File metadata and controls

45 lines (26 loc) · 971 Bytes

无监督学习

1. 统计学习

Clustering

  • Centroid models: k-means clustering
  • Connectivity models: Hierarchical clustering
  • Density models: DBSCAN

Gaussian Mixture Models

  • EM是解KMS算法的方法,EM还可以解其他问题例如GMM

Latent semantic analysis

Hidden Markov Models (HMMs)

  • Markov processes
  • Transition probability and emission probability
  • Viterbi algorithm

Dimension reduction techniques

  • Principal Component Analysis (PCA)
  • Independent Component Analysis (ICA)
  • T-SNE

2. 深度学习自监督

contrastive learning 对比学习

相似的实例在投影空间中比较接近,不相似的实例在投影空间中距离比较远

3. 半监督

4. 应用场景

实际应用中,无监督往往更注重强特征提取

异常检测专题

reference