Clustering
- Centroid models: k-means clustering
- Connectivity models: Hierarchical clustering
- Density models: DBSCAN
Gaussian Mixture Models
- EM是解KMS算法的方法,EM还可以解其他问题例如GMM
Latent semantic analysis
Hidden Markov Models (HMMs)
- Markov processes
- Transition probability and emission probability
- Viterbi algorithm
Dimension reduction techniques
- Principal Component Analysis (PCA)
- Independent Component Analysis (ICA)
- T-SNE
contrastive learning 对比学习
相似的实例在投影空间中比较接近,不相似的实例在投影空间中距离比较远
实际应用中,无监督往往更注重强特征提取