- 机器学习系统中处理相似商品推荐时,去重复(deduplication)可以确保用户获得多样化且相关的商品选项
- 商品推荐:检测商品是否为重复条目(例如不同商家上传了相同的商品图片或描述)
- 视频版权检测:检测用户上传的视频是否与现有视频库中的内容重复,以保护版权
- user上传的视频是否和a large media collection里的视频有重复
Non-functional
- 能够高效处理大规模数据(数百万条商品或视频)
- Scalability: Handle millions of products/videos
- Cost-effective solution for large-scale deployment
- 支持近实时检测(商品上传或视频上传后快速完成重复性判断)
- Latency requirement: < 500ms for real-time checking
- 系统需兼顾计算效率和检索准确率
- Accuracy: High precision to avoid false copyright claims
Input -> Feature Extraction -> Embedding Generation -> Similarity Search -> Decision Making
- 基本属性来检测重复(ID, 相似度)
- 局部敏感哈希, video做hashing,用bloom filter
- 做embedding,放vector database,找nearest neighbor
商品去重:
- 商品图片、标题、描述文本等
- 数据来源于电商平台上的商品库
视频版权检测:
- 用户上传的视频
- 已知的版权视频库(large media collection)
products:
- Image features: CNN-based feature extractor
- Text features: BERT/transformers for title/description
videos:
- Frame-level Features
- Key frame extraction
- CNN features for frames
- Motion vectors
- Audio fingerprinting
- MFCC features
- Audio fingerprints
- Spectrograms
- Temporal Features
- Scene transitions
- Temporal pyramids
- Sequential patterns
First Stage (Coarse Filtering)
- LSH-based quick filtering
- Quick lookup in Bloom filter
Second Stage (Fine-grained Matching)
- Deep neural network for similarity scoring
- Precision@K
- Recall@K
- Mean Average Precision (MAP)
- False Positive Rate
- Detection Speed
[Client] -> [Load Balancer] -> [API Gateway] -> [Feature Extraction Service] -> [Vector Search Service] -> [Decision Service]
Scaling Strategy:
- Horizontal scaling for feature extraction
- Distributed vector database (FAISS/Milvus)
- Caching layer for frequent queries
- Message queue for async processing
System Health
- Latency (p50, p90, p99)
- Error rates
- Resource utilization
Model Performance
- False positive rate
- False negative rate
- Model drift
Business Metrics
- Number of detected duplicates
- Copyright violation detection rate