-
Notifications
You must be signed in to change notification settings - Fork 312
/
Copy pathdataset.py
433 lines (348 loc) · 14 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package implements some benchmark dataset for graph network
and node representation learning.
"""
import os
import io
import sys
import numpy as np
import pickle as pkl
from pgl.graph import Graph
__all__ = [
"CitationDataset",
"CoraDataset",
"ArXivDataset",
"BlogCatalogDataset",
"RedditDataset",
]
def get_default_data_dir(name):
"""Get data path name"""
dir_path = os.path.abspath(os.path.dirname(__file__))
dir_path = os.path.join(dir_path, 'data')
filepath = os.path.join(dir_path, name)
return filepath
def _pickle_load(pkl_file):
"""Load pickle"""
if sys.version_info > (3, 0):
return pkl.load(pkl_file, encoding='latin1')
else:
return pkl.load(pkl_file)
def _parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
class CitationDataset(object):
"""Citation dataset helps to create data for citation dataset (Pubmed and Citeseer)
Args:
name: The name for the dataset ("pubmed" or "citeseer")
symmetry_edges: Whether to create symmetry edges.
self_loop: Whether to contain self loop edges.
Attributes:
graph: The :code:`Graph` data object
y: Labels for each nodes
num_classes: Number of classes.
train_index: The index for nodes in training set.
val_index: The index for nodes in validation set.
test_index: The index for nodes in test set.
"""
def __init__(self, name, symmetry_edges=True, self_loop=True):
self.path = get_default_data_dir(name)
self.symmetry_edges = symmetry_edges
self.self_loop = self_loop
self.name = name
self._load_data()
def _load_data(self):
"""Load data
"""
import networkx as nx
objnames = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(objnames)):
with open("{}/ind.{}.{}".format(self.path, self.name, objnames[i]),
'rb') as f:
objects.append(_pickle_load(f))
x, y, tx, ty, allx, ally, _graph = objects
test_idx_reorder = _parse_index_file("{}/ind.{}.test.index".format(
self.path, self.name))
test_idx_range = np.sort(test_idx_reorder)
allx = allx.todense()
tx = tx.todense()
if self.name == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = np.zeros(
(len(test_idx_range_full), x.shape[1]), dtype="float32")
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros(
(len(test_idx_range_full), y.shape[1]), dtype="float32")
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = np.vstack([allx, tx])
features[test_idx_reorder, :] = features[test_idx_range, :]
features = features / (np.sum(features, axis=-1) + 1e-15)
features = np.array(features, dtype="float32")
_graph = nx.DiGraph(nx.from_dict_of_lists(_graph))
onehot_labels = np.vstack((ally, ty))
onehot_labels[test_idx_reorder, :] = onehot_labels[test_idx_range, :]
labels = np.argmax(onehot_labels, 1)
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y) + 500)
all_edges = []
for i in _graph.edges():
u, v = tuple(i)
all_edges.append((u, v))
if self.symmetry_edges:
all_edges.append((v, u))
if self.self_loop:
for i in range(_graph.number_of_nodes()):
all_edges.append((i, i))
all_edges = list(set(all_edges))
self.graph = Graph(
num_nodes=_graph.number_of_nodes(),
edges=all_edges,
node_feat={"words": features})
self.y = np.array(labels, dtype="int64")
self.num_classes = onehot_labels.shape[1]
self.train_index = np.array(idx_train, dtype="int32")
self.val_index = np.array(idx_val, dtype="int32")
self.test_index = np.array(idx_test, dtype="int32")
class CoraDataset(object):
"""Cora dataset implementation
Args:
symmetry_edges: Whether to create symmetry edges.
self_loop: Whether to contain self loop edges.
Attributes:
graph: The :code:`Graph` data object
y: Labels for each nodes
num_classes: Number of classes.
train_index: The index for nodes in training set.
val_index: The index for nodes in validation set.
test_index: The index for nodes in test set.
"""
def __init__(self, symmetry_edges=True, self_loop=True):
self.path = get_default_data_dir("cora")
self.symmetry_edges = symmetry_edges
self.self_loop = self_loop
self._load_data()
def _load_data(self):
"""Load data"""
content = os.path.join(self.path, 'cora.content')
cite = os.path.join(self.path, 'cora.cites')
node_feature = []
paper_ids = []
y = []
y_dict = {}
with open(content, 'r') as f:
for line in f:
line = line.strip().split()
paper_id = int(line[0])
paper_class = line[-1]
if paper_class not in y_dict:
y_dict[paper_class] = len(y_dict)
feature = [int(i) for i in line[1:-1]]
feature_array = np.array(feature, dtype="float32")
# Normalize
feature_array = feature_array / (np.sum(feature_array) + 1e-15)
node_feature.append(feature_array)
y.append(y_dict[paper_class])
paper_ids.append(paper_id)
paper2vid = dict([(v, k) for (k, v) in enumerate(paper_ids)])
num_nodes = len(paper_ids)
node_feature = np.array(node_feature, dtype="float32")
all_edges = []
with open(cite, 'r') as f:
for line in f:
u, v = line.split()
u = paper2vid[int(u)]
v = paper2vid[int(v)]
all_edges.append((u, v))
if self.symmetry_edges:
all_edges.append((v, u))
if self.self_loop:
for i in range(num_nodes):
all_edges.append((i, i))
all_edges = list(set(all_edges))
self.graph = Graph(
num_nodes=num_nodes,
edges=all_edges,
node_feat={"words": node_feature})
perm = np.arange(0, num_nodes)
#np.random.shuffle(perm)
self.train_index = perm[:140]
self.val_index = perm[200:500]
self.test_index = perm[500:1500]
self.y = np.array(y, dtype="int64")
self.train_label = self.y[self.train_index]
self.val_label = self.y[self.val_index]
self.test_label = self.y[self.test_index]
self.num_classes = len(y_dict)
self.feature = node_feature
class BlogCatalogDataset(object):
"""BlogCatalog dataset implementation
Args:
symmetry_edges: Whether to create symmetry edges.
self_loop: Whether to contain self loop edges.
Attributes:
graph: The :code:`Graph` data object.
num_groups: Number of classes.
train_index: The index for nodes in training set.
test_index: The index for nodes in validation set.
"""
def __init__(self, symmetry_edges=True, self_loop=False):
self.path = get_default_data_dir("BlogCatalog")
self.num_groups = 39
self.symmetry_edges = symmetry_edges
self.self_loop = self_loop
self._load_data()
def _load_data(self):
edge_path = os.path.join(self.path, 'edges.csv')
node_path = os.path.join(self.path, 'nodes.csv')
group_edge_path = os.path.join(self.path, 'group-edges.csv')
all_edges = []
with io.open(node_path) as inf:
num_nodes = len(inf.readlines())
node_feature = np.zeros((num_nodes, self.num_groups))
with io.open(group_edge_path) as inf:
for line in inf:
node_id, group_id = line.strip('\n').split(',')
node_id, group_id = int(node_id) - 1, int(group_id) - 1
node_feature[node_id][group_id] = 1
with io.open(edge_path) as inf:
for line in inf:
u, v = line.strip('\n').split(',')
u, v = int(u) - 1, int(v) - 1
all_edges.append((u, v))
if self.symmetry_edges:
all_edges.append((v, u))
if self.self_loop:
for i in range(num_nodes):
all_edges.append((i, i))
all_edges = list(set(all_edges))
self.graph = Graph(
num_nodes=num_nodes,
edges=all_edges,
node_feat={"group_id": node_feature})
perm = np.arange(0, num_nodes)
np.random.shuffle(perm)
train_num = int(num_nodes * 0.5)
self.train_index = perm[:train_num]
self.test_index = perm[train_num:]
class ArXivDataset(object):
"""ArXiv dataset implementation
Args:
np_random_seed: The random seed for numpy.
Attributes:
graph: The :code:`Graph` data object.
"""
def __init__(self, np_random_seed=123):
self.path = get_default_data_dir("arXiv")
self.np_random_seed = np_random_seed
self._load_data()
def _load_data(self):
np.random.seed(self.np_random_seed)
edge_path = os.path.join(self.path, 'ca-AstroPh.txt')
bi_edges = set()
self.neg_edges = []
self.pos_edges = []
self.node2id = dict()
def node_id(node):
if node not in self.node2id:
self.node2id[node] = len(self.node2id)
return self.node2id[node]
with io.open(edge_path) as inf:
for _ in range(4):
inf.readline()
for line in inf:
u, v = line.strip('\n').split('\t')
u, v = node_id(u), node_id(v)
if u < v:
bi_edges.add((u, v))
else:
bi_edges.add((v, u))
num_nodes = len(self.node2id)
while len(self.neg_edges) < len(bi_edges) // 2:
random_edges = np.random.choice(num_nodes, [len(bi_edges), 2])
for (u, v) in random_edges:
if u != v and (u, v) not in bi_edges and (v, u
) not in bi_edges:
self.neg_edges.append((u, v))
if len(self.neg_edges) == len(bi_edges) // 2:
break
bi_edges = list(bi_edges)
np.random.shuffle(bi_edges)
self.pos_edges = bi_edges[:len(bi_edges) // 2]
bi_edges = bi_edges[len(bi_edges) // 2:]
all_edges = []
for edge in bi_edges:
u, v = edge
all_edges.append((u, v))
all_edges.append((v, u))
self.graph = Graph(num_nodes=num_nodes, edges=all_edges)
class RedditDataset(object):
def __init__(self, normalize=True, symmetry=True):
download_help_str = r"""
data from https://github.com/matenure/FastGCN/issues/8
You can download from Aistudio:
https://aistudio.baidu.com/aistudio/datasetdetail/39616
or google drive:
reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt
reddit.npz: https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
"""
self.path = get_default_data_dir("reddit")
if not os.path.exists(self.path):
raise ValueError(
"\n Please download the dataset to \n "
" \t{} \n before use it.\n More information about download: {}".
format(self.path, download_help_str))
self._load_data(normalize, symmetry)
def _load_data(self, normalize=True, symmetry=True):
from sklearn.preprocessing import StandardScaler
import scipy.sparse as sp
data = np.load(os.path.join(self.path, "reddit.npz"))
adj = sp.load_npz(os.path.join(self.path, "reddit_adj.npz"))
if symmetry:
adj = adj + adj.T
adj = adj.tocoo()
src = adj.row
dst = adj.col
num_classes = 41
train_label = data['y_train']
val_label = data['y_val']
test_label = data['y_test']
train_index = data['train_index']
val_index = data['val_index']
test_index = data['test_index']
feature = data["feats"].astype("float32")
if normalize:
scaler = StandardScaler()
scaler.fit(feature[train_index])
feature = scaler.transform(feature)
graph = Graph(num_nodes=feature.shape[0], edges=list(zip(src, dst)))
self.graph = graph
self.train_index = train_index
self.train_label = train_label
self.val_label = val_label
self.val_index = val_index
self.test_index = test_index
self.test_label = test_label
self.feature = feature
self.num_classes = 41