An octahedron is an 8-sided polyhedron whose faces are triangles.
Create a method that outputs a 3-dimensional array of an octahedron in which the height, width, and depth are equal to the provided integer size
, which is equal to the length from one vertex to the opposite vertex on the octahedron.
createOctahedron(7)
{{
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}, {
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}, {
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 1, 1, 1, 1, 1, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}, {
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 1, 1, 1, 1, 1, 0 },
{ 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 }
}, {
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 1, 1, 1, 1, 1, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}, {
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}, {
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
}}
where each 1 represents a cubic unit that the octahedron takes up and where 0 is a cubic unit of empty space.
- The method should return an empty array/list if either
- The input size is even (because then it wouldn't be an octahedron. It'd be an irregular polyhedron with 26 sides)
- if the input size is 0 or less
- if input size is 1 (that's called a cube).