-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTEMP3.m
112 lines (92 loc) · 3.51 KB
/
TEMP3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
% 设置问题参数
num_cities = 16; % 城市数量
num_salesmen = 3; % 旅行商数量
distanceMatrix = load('distanceMatrix.mat');
distanceMatrix = distanceMatrix.distanceMatrix; % 节点距离矩阵
% 粒子群算法参数
num_particles = 50; % 粒子数量
max_iterations = 100; % 最大迭代次数
% 初始化粒子的位置和速度
particles = zeros(num_cities, num_salesmen, num_particles);
for p = 1:num_particles
for s = 1:num_salesmen
particles(:, s, p) = randperm(num_cities)';
end
end
% 初始化全局最优解
global_best_cost = Inf;
global_best_path = zeros(num_cities, num_salesmen);
% 迭代更新粒子位置和速度
for iteration = 1:max_iterations
% 更新每个粒子的位置和速度
for p = 1:num_particles
for s = 1:num_salesmen
% 更新速度
velocity = rand(num_cities,1) < 0.5; % 随机生成速度
particles(:,s,p) = particles(:,s,p) + velocity;
% 越界处理
particles(:,s,p) = mod(particles(:,s,p)-1, num_cities) + 1;
end
end
% 计算每个粒子的适应度
costs = zeros(num_particles, 1);
for p = 1:num_particles
path = reshape(particles(:,:,p), num_cities*num_salesmen, 1);
costs(p) = calculate_cost(path, distanceMatrix, num_salesmen);
end
% 更新局部最优解
[particle_best_cost, particle_best_idx] = min(costs);
particle_best_path = reshape(particles(:,:,particle_best_idx), num_cities, num_salesmen);
% 更新全局最优解
if particle_best_cost < global_best_cost
global_best_cost = particle_best_cost;
global_best_path = particle_best_path;
end
% 更新粒子位置和速度
for p = 1:num_particles
for s = 1:num_salesmen
% 更新速度
velocity = update_velocity(particles(:,:,p), global_best_path, s);
particles(:,s,p) = particles(:, s, p) + velocity;
% 越界处理
particles(:,s,p) = mod(particles(:,s,p)-1, num_cities) + 1;
end
end
% 显示当前迭代结果
disp(['Iteration ' num2str(iteration) ': Best Cost = ' num2str(global_best_cost)]);
end
% 打印最优路径
disp('Optimal Path:');
disp(global_best_path);
% 计算路径长度
optimal_cost = calculate_cost(reshape(global_best_path, num_cities*num_salesmen, 1), distanceMatrix, num_salesmen);
disp(['Optimal Cost = ' num2str(optimal_cost)]);
function cost = calculate_cost(path, distances, num_salesmen)
cost = 0;
for s = 1:num_salesmen
for i = 1:length(path)-1
city1 = path(i, s);
city2 = path(i+1, s);
cost = cost + distances(city1, city2);
end
end
end
function velocity = update_velocity(position, global_best_path, salesman_idx)
c1 = 2; % 加速度系数1
c2 = 2; % 加速度系数2
w = 0.7; % 惯性权重
velocity = zeros(size(position));
for i = 1:size(position,1)
if rand < w
% 更新速度
prev_city = position(i, salesman_idx);
next_city = global_best_path(i, salesman_idx);
velocity(i, salesman_idx) = w * velocity(i, salesman_idx) + c1 * rand * (next_city - prev_city) + c2 * rand * (global_best_path(i, salesman_idx) - prev_city);
else
% 随机重置速度
velocity(i, salesman_idx) = rand * size(position, 2);
end
% 限制速度范围
velocity(i, salesman_idx) = max(1, min(size(position, 2), velocity(i, salesman_idx)));
end
end