-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathquick_select.py
93 lines (79 loc) · 2.45 KB
/
quick_select.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
A Python implementation of the quick select algorithm, which is efficient for
calculating the value that would appear in the index of a list if it would be
sorted, even if it is not already sorted
https://en.wikipedia.org/wiki/Quickselect
"""
import random
def _partition(data: list, pivot) -> tuple:
"""
Three way partition the data into smaller, equal and greater lists,
in relationship to the pivot
:param data: The data to be sorted (a list)
:param pivot: The value to partition the data on
:return: Three list: smaller, equal and greater
"""
less, equal, greater = [], [], []
for element in data:
if element < pivot:
less.append(element)
elif element > pivot:
greater.append(element)
else:
equal.append(element)
return less, equal, greater
def quick_select(items: list, index: int):
"""
>>> quick_select([2, 4, 5, 7, 899, 54, 32], 5)
54
>>> quick_select([2, 4, 5, 7, 899, 54, 32], 1)
4
>>> quick_select([5, 4, 3, 2], 2)
4
>>> quick_select([3, 5, 7, 10, 2, 12], 3)
7
"""
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(items) or index < 0:
return None
pivot = items[random.randint(0, len(items) - 1)]
count = 0
smaller, equal, larger = _partition(items, pivot)
count = len(equal)
m = len(smaller)
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(smaller, index)
# must be in larger
else:
return quick_select(larger, index - (m + count))
def median(data: list):
"""One common application of Quickselect is finding the median, which is
the middle element (or average of the two middle elements) in a dataset. It
works efficiently on unsorted lists by partially sorting the data without
fully sorting the entire list.
>>> import random
>>> random.seed(0)
>>> d = [2, 2, 3, 9, 9]
>>> random.shuffle(d)
>>> d
[3, 2, 2, 9, 9]
>>> median(d)
3
>>> d = [2, 2, 3, 9, 9, 9]
>>> random.shuffle(d)
>>> median(d)
6.0
"""
mid, rest = divmod(len(data), 2)
if rest:
return quick_select(data, mid)
else:
low_mid = quick_select(data, mid - 1)
high_mid = quick_select(data, mid)
return (low_mid + high_mid) / 2