-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.js
168 lines (133 loc) · 5.13 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as blazeface from '@tensorflow-models/blazeface';
import * as tf from '@tensorflow/tfjs';
// import * as tfjs from '@tensorflow/tfjs';
import * as tfjsWasm from '@tensorflow/tfjs-backend-wasm';
tfjsWasm.setWasmPath('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@latest/dist/tfjs-backend-wasm.wasm');
const stats = new Stats();
stats.showPanel(0);
document.body.prepend(stats.domElement);
let model, classifier, ctx, videoWidth, videoHeight, video, videoCrop, canvas;
const state = {
backend: 'wasm'
};
const gui = new dat.GUI();
gui.add(state, 'backend', ['wasm', 'webgl', 'cpu']).onChange(async backend => {
await tf.setBackend(backend);
});
async function setupCamera() {
video = document.getElementById('video');
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': { facingMode: 'user' },
});
video.srcObject = stream;
return new Promise((resolve) => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
function getImage(video, sizeImg, startImg) {
const canvasTemp = document.createElement('canvas');
canvasTemp.height = sizeImg;
canvasTemp.width = sizeImg;
const ctxTemp = canvasTemp.getContext("2d");
ctxTemp.clearRect(0, 0, sizeImg, sizeImg); // clear canvas
ctxTemp.drawImage(video, startImg[0], startImg[1], sizeImg, sizeImg, 0, 0, sizeImg, sizeImg);
return canvasTemp;
}
const renderPrediction = async () => {
stats.begin();
const font = "24px sans-serif";
ctx.font = font;
const returnTensors = false;
const flipHorizontal = true;
const annotateBoxes = true;
const classifySpoof = true;
const predictions = await model.estimateFaces(
video, returnTensors, flipHorizontal, annotateBoxes);
if (predictions.length > 0) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
for (let i = 0; i < predictions.length; i++) {
if (returnTensors) {
predictions[i].topLeft = predictions[i].topLeft.arraySync();
predictions[i].bottomRight = predictions[i].bottomRight.arraySync();
}
const start = predictions[i].topLeft;
const end = predictions[i].bottomRight;
const size = [end[0] - start[0], end[1] - start[1]];
const mid = [(start[0] + end[0]) * 0.5, (start[1] + end[1]) * 0.5]
// create a Square bounding box
const scale = 1.1
const sizeNew = Math.max(size[0], size[1]) * scale
const startNew = [mid[0] - (sizeNew * 0.5), mid[1] - (sizeNew * 0.5)]
// Rendering the bounding box
ctx.strokeStyle="red";
ctx.lineWidth = "4";
ctx.strokeRect(startNew[0], startNew[1], sizeNew, sizeNew);
// Perform spoof classification (UNFINISHED!)
if (classifySpoof) {
// Cropping the frame and perform spoof classification
const endNew = [startNew[0] + sizeNew, startNew[1] + sizeNew];
videoCrop = getImage(video, sizeNew, startNew);
const logits = tf.tidy(() => {
const normalizationConstant = 1.0 / 255.0;
let tensor = tf.browser.fromPixels(videoCrop, 3)
.resizeBilinear([224, 224], false)
.expandDims(0)
.toFloat()
.mul(normalizationConstant)
return classifier.predict(tensor);
});
const labelPredict = await logits.data();
const label = labelPredict < 0.5? 'Real' : 'Spoof';
var labelDisp = label // + ": " + labelPredict
// Drawing the label
ctx.fillStyle = "red";
const textWidth = ctx.measureText(labelDisp).width;
const textHeight = parseInt(font, 10); // base 10
ctx.fillRect(startNew[0], startNew[1]-textHeight, textWidth + 4, textHeight + 4);
ctx.fillStyle = "white";
ctx.fillText(labelDisp, startNew[0], startNew[1]);
}
}
}
stats.end();
requestAnimationFrame(renderPrediction);
};
const setupPage = async () => {
await tf.setBackend(state.backend);
await setupCamera();
video.play();
videoWidth = video.videoWidth;
videoHeight = video.videoHeight;
video.width = videoWidth;
video.height = videoHeight;
canvas = document.getElementById('output');
canvas.width = videoWidth;
canvas.height = videoHeight;
ctx = canvas.getContext('2d');
ctx.fillStyle = "rgba(255, 0, 0, 0.5)";
model = await blazeface.load();
// Load classifier from static storage
const MODEL_URL = "https://storage.googleapis.com/bangkit/mobilenet-spoof/model.json"
classifier = await tf.loadLayersModel(MODEL_URL);
renderPrediction();
};
setupPage();