-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsegment.py
133 lines (123 loc) · 5.02 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import cv2
import sys
import numpy as np
from skimage import segmentation
import torch.nn.init
use_cuda = torch.cuda.is_available()
parser = argparse.ArgumentParser(description='PyTorch Unsupervised Segmentation')
parser.add_argument('--nChannel', metavar='N', default=100, type=int,
help='number of channels')
parser.add_argument('--maxIter', metavar='T', default=1000, type=int,
help='number of maximum iterations')
parser.add_argument('--minLabels', metavar='minL', default=3, type=int,
help='minimum number of labels')
parser.add_argument('--lr', metavar='LR', default=0.1, type=float,
help='learning rate')
parser.add_argument('--nConv', metavar='M', default=2, type=int,
help='number of convolutional layers')
parser.add_argument('--num_superpixels', metavar='K', default=10000, type=int,
help='number of superpixels')
parser.add_argument('--compactness', metavar='C', default=100, type=float,
help='compactness of superpixels')
parser.add_argument('--visualize', metavar='1 or 0', default=1, type=int,
help='visualization flag')
parser.add_argument('--input', metavar='FILENAME',
help='input image file name', required=True)
args = parser.parse_args()
# CNN model
class MyNet(nn.Module):
def __init__(self,input_dim):
super(MyNet, self).__init__()
self.conv1 = nn.Conv2d(input_dim, args.nChannel, kernel_size=3, stride=1, padding=1 )
self.bn1 = nn.BatchNorm2d(args.nChannel)
self.conv2 = []
self.bn2 = []
for i in range(args.nConv-1):
self.conv2.append( nn.Conv2d(args.nChannel, args.nChannel, kernel_size=3, stride=1, padding=1 ) )
self.bn2.append( nn.BatchNorm2d(args.nChannel) )
self.conv3 = nn.Conv2d(args.nChannel, args.nChannel, kernel_size=1, stride=1, padding=0 )
self.bn3 = nn.BatchNorm2d(args.nChannel)
def forward(self, x):
x = self.conv1(x)
x = F.relu( x )
x = self.bn1(x)
for i in range(args.nConv-1):
x = self.conv2[i](x)
x = F.relu( x )
x = self.bn2[i](x)
x = self.conv3(x)
x = self.bn3(x)
return x
# load image
im = cv2.imread(args.input)
data = torch.from_numpy( np.array([im.transpose( (2, 0, 1) ).astype('float32')/255.]) )
if use_cuda:
data = data.cuda()
data = Variable(data)
# slic
labels = segmentation.slic(im, compactness=args.compactness, n_segments=args.num_superpixels)
labels = labels.reshape(im.shape[0]*im.shape[1])
u_labels = np.unique(labels)
l_inds = []
for i in range(len(u_labels)):
l_inds.append( np.where( labels == u_labels[ i ] )[ 0 ] )
# train
model = MyNet( data.size(1) )
if use_cuda:
model.cuda()
for i in range(args.nConv-1):
model.conv2[i].cuda()
model.bn2[i].cuda()
model.train()
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
label_colours = np.random.randint(255,size=(100,3))
for batch_idx in range(args.maxIter):
# forwarding
optimizer.zero_grad()
output = model( data )[ 0 ]
output = output.permute( 1, 2, 0 ).contiguous().view( -1, args.nChannel )
ignore, target = torch.max( output, 1 )
im_target = target.data.cpu().numpy()
nLabels = len(np.unique(im_target))
if args.visualize:
im_target_rgb = np.array([label_colours[ c % 100 ] for c in im_target])
im_target_rgb = im_target_rgb.reshape( im.shape ).astype( np.uint8 )
cv2.imshow( "output", im_target_rgb )
cv2.waitKey(10)
# superpixel refinement
for i in range(len(l_inds)):
labels_per_sp = im_target[ l_inds[ i ] ]
u_labels_per_sp = np.unique( labels_per_sp )
hist = np.zeros( len(u_labels_per_sp) )
for j in range(len(hist)):
hist[ j ] = len( np.where( labels_per_sp == u_labels_per_sp[ j ] )[ 0 ] )
im_target[ l_inds[ i ] ] = u_labels_per_sp[ np.argmax( hist ) ]
target = torch.from_numpy( im_target )
if use_cuda:
target = target.cuda()
target = Variable( target )
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
print (batch_idx, '/', args.maxIter, ':', nLabels, loss.data[0])
if nLabels <= args.minLabels:
print ("nLabels", nLabels, "reached minLabels", args.minLabels, ".")
break
# save output image
if not args.visualize:
output = model( data )[ 0 ]
output = output.permute( 1, 2, 0 ).contiguous().view( -1, args.nChannel )
ignore, target = torch.max( output, 1 )
im_target = target.data.cpu().numpy()
im_target_rgb = np.array([label_colours[ c % 100 ] for c in im_target])
im_target_rgb = im_target_rgb.reshape( im.shape ).astype( np.uint8 )
cv2.imwrite( "output.png", im_target_rgb )