forked from kstenerud/Musashi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhdi08.cpp
334 lines (270 loc) · 7.02 KB
/
hdi08.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#include "hdi08.h"
#include <cassert>
#include "logging.h"
namespace mc68k
{
constexpr uint32_t g_readTimeoutCycles = 50;
Hdi08::Hdi08()
{
setWriteTxCallback(nullptr);
setWriteIrqCallback(nullptr);
setReadIsrCallback(nullptr);
setInitHdi08Callback(nullptr);
write8(PeriphAddress::HdiIVR, 0xf);
}
uint8_t Hdi08::read8(PeriphAddress _addr)
{
switch (_addr)
{
case PeriphAddress::HdiICR:
return icr();
case PeriphAddress::HdiISR:
return isr();
case PeriphAddress::HdiTXH: return readRX(WordFlags::H);
case PeriphAddress::HdiTXM: return readRX(WordFlags::M);
case PeriphAddress::HdiTXL: return readRX(WordFlags::L);
case PeriphAddress::HdiCVR:
return PeripheralBase::read8(_addr);
}
const auto r = PeripheralBase::read8(_addr);
// MCLOG("read8 addr=" << MCHEXN(_addr, 8));
return r;
}
uint16_t Hdi08::read16(PeriphAddress _addr)
{
switch (_addr)
{
case PeriphAddress::HdiUnused4:
return read8(PeriphAddress::HdiTXH);
case PeriphAddress::HdiTXM:
{
uint16_t r = (static_cast<uint16_t>(read8(PeriphAddress::HdiTXM)) << static_cast<uint16_t>(8));
r |= static_cast<uint16_t>(read8(PeriphAddress::HdiTXL));
return r;
}
}
MCLOG("read16 addr=" << MCHEXN(_addr, 8));
return PeripheralBase::read16(_addr);
}
void Hdi08::write8(PeriphAddress _addr, uint8_t _val)
{
PeripheralBase::write8(_addr, _val);
switch (_addr)
{
case PeriphAddress::HdiISR:
// MCLOG("HDI08 ISR set to " << MCHEXN(_val,2));
return;
case PeriphAddress::HdiICR:
// MCLOG("HDI08 ICR set to " << MCHEXN(_val,2));
if(_val & Init)
{
MCLOG("HDI08 Initialization, HREQ=" << (_val & Rreq) << ", TREQ=" << (_val & Treq));
m_initHdi08Callback();
}
return;
case PeriphAddress::HdiCVR:
if(_val & Hc)
{
const auto addr = static_cast<uint8_t>((_val & Hv) << 1);
// MCLOG("HDI08 Host Vector Interrupt Request, interrupt vector = " << MCHEXN(addr, 2));
m_writeIrqCallback(addr);
const auto val = read8(PeriphAddress::HdiCVR);
PeripheralBase::write8(PeriphAddress::HdiCVR, val & ~Hc);
// write8(_addr, _val & ~Hc);
}
return;
case PeriphAddress::HdiTXH: writeTX(WordFlags::H, _val); return;
case PeriphAddress::HdiTXM: writeTX(WordFlags::M, _val); return;
case PeriphAddress::HdiTXL: writeTX(WordFlags::L, _val); return;
}
MCLOG("write8 addr=" << MCHEXN(_addr, 8) << ", val=" << MCHEXN(static_cast<int>(_val),2));
}
void Hdi08::write16(PeriphAddress _addr, uint16_t _val)
{
PeripheralBase::write16(_addr, _val);
switch (_addr)
{
case PeriphAddress::HdiUnused4:
write8(PeriphAddress::HdiTXH, _val & 0xff);
return;
case PeriphAddress::HdiTXM:
write8(PeriphAddress::HdiTXM, _val >> 8);
write8(PeriphAddress::HdiTXL, _val & 0xff);
break;
default:
MCLOG("write16 addr=" << MCHEXN(_addr, 8) << ", val=" << MCHEXN(_val,4));
break;
}
}
bool Hdi08::pollInterruptRequest(uint8_t& _addr)
{
if(m_pendingInterruptRequests.empty())
return false;
_addr = m_pendingInterruptRequests.front();
m_pendingInterruptRequests.pop_front();
return true;
}
void Hdi08::writeRx(uint32_t _word)
{
// MCLOG("HDI writeRX=" << HEX(_word));
m_rxData.push_back(_word);
const auto s = isr();
if(!(s & Rxdf))
pollRx();
}
void Hdi08::exec(const uint32_t _deltaCycles)
{
PeripheralBase::exec(_deltaCycles);
auto isr = PeripheralBase::read8(PeriphAddress::HdiISR);//Hdi08::isr();
if(!(isr & Rxdf))
return;
if(m_rxData.empty())
return;
m_readTimeoutCycles += _deltaCycles;
if(m_readTimeoutCycles >= g_readTimeoutCycles)
{
#ifdef _DEBUG
MCLOG("HDI RX read timeout on byte " << MCHEXN(m_rxd, 2));
#endif
isr &= ~Rxdf;
write8(PeriphAddress::HdiISR, isr);
pollRx();
}
}
bool Hdi08::canReceiveData()
{
return (PeripheralBase::read8(PeriphAddress::HdiISR) & Rxdf) == 0;
}
void Hdi08::setWriteTxCallback(const CallbackWriteTx& _writeTxCallback)
{
if(_writeTxCallback)
{
m_writeTxCallback = _writeTxCallback;
}
else
{
m_writeTxCallback = [this] (const uint32_t _word)
{
m_txData.push_back(_word);
};
}
}
void Hdi08::setWriteIrqCallback(const CallbackWriteIrq& _writeIrqCallback)
{
if(_writeIrqCallback)
{
m_writeIrqCallback = _writeIrqCallback;
}
else
{
m_writeIrqCallback = [this](uint8_t _irq)
{
m_pendingInterruptRequests.push_back(_irq);
};
}
}
void Hdi08::setReadIsrCallback(const CallbackReadIsr& _readIsrCallback)
{
if(_readIsrCallback)
m_readIsrCallback = _readIsrCallback;
else
m_readIsrCallback = [](const uint8_t _isr) { return _isr; };
}
void Hdi08::setInitHdi08Callback(const CallbackInitHdi08& _callback)
{
if(_callback)
m_initHdi08Callback = _callback;
else
m_initHdi08Callback = [] {};
}
void Hdi08::writeTX(WordFlags _index, const uint8_t _val)
{
m_txBytes[static_cast<uint32_t>(_index)] = _val;
addIndex(m_writtenFlags, _index);
if(_index != WordFlags::L)
return;
const uint32_t h = m_txBytes[0];
const uint32_t m = m_txBytes[1];
const uint32_t l = m_txBytes[2];
const auto word = littleEndian() ?
l << 16 | m << 8 | h :
h << 16 | m << 8 | l;
m_writeTxCallback(word);
// MCLOG("HDI TX: " << MCHEXN(word, 6));
m_txBytes.fill(0);
m_writtenFlags = WordFlags::None;
}
Hdi08::WordFlags Hdi08::makeMask(WordFlags _index)
{
return static_cast<WordFlags>(1 << static_cast<uint32_t>(_index));
}
void Hdi08::addIndex(WordFlags& _existing, WordFlags _indexToAdd)
{
_existing = static_cast<WordFlags>(static_cast<uint32_t>(_existing) | static_cast<uint32_t>(makeMask(_indexToAdd)));
}
void Hdi08::removeIndex(WordFlags& _existing, WordFlags _indexToRemove)
{
_existing = static_cast<WordFlags>(static_cast<uint32_t>(_existing) & ~static_cast<uint32_t>(makeMask(_indexToRemove)));
}
uint8_t Hdi08::littleEndian()
{
return read8(PeriphAddress::HdiICR) & static_cast<uint8_t>(Hlend);
}
uint8_t Hdi08::readRX(WordFlags _index)
{
const auto hasRX = isr() & Rxdf;
if(!hasRX)
{
m_rxEmptyCallback(true);
const auto s = isr();
if(!(s & Rxdf))
{
// MCLOG("Empty read of RX");
return 0;
}
}
const auto word = m_rxd;
std::array<uint8_t, 3> bytes{};
const auto le = littleEndian();
auto pop = [&]()
{
write8(PeriphAddress::HdiISR, isr() & ~(Rxdf));
m_rxEmptyCallback(false);
};
if(le)
{
bytes[0] = (word) & 0xff;
bytes[1] = (word >> 8) & 0xff;
bytes[2] = (word >> 16) & 0xff;
if(_index == WordFlags::H)
pop();
}
else
{
bytes[0] = (word >> 16) & 0xff;
bytes[1] = (word >> 8) & 0xff;
bytes[2] = (word) & 0xff;
if(_index == WordFlags::L)
pop();
}
removeIndex(m_readFlags, _index);
return bytes[static_cast<uint32_t>(_index)];
}
bool Hdi08::pollRx()
{
if(m_rxData.empty())
return false;
m_readTimeoutCycles = 0;
m_rxd = m_rxData.front();
m_rxData.pop_front();
auto isr = Hdi08::isr();
write8(PeriphAddress::HdiISR, isr | Rxdf);
m_readFlags = WordFlags::Mask;
if(isr & Hreq)
{
const auto ivr = read8(PeriphAddress::HdiIVR);
assert(false);
}
return true;
}
}