forked from kstenerud/Musashi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqsm.cpp
478 lines (394 loc) · 11.3 KB
/
qsm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#include "qsm.h"
#include "logging.h"
#include "mc68k.h"
namespace mc68k
{
constexpr uint16_t g_spcr0_mstrMask = (1<<15);
constexpr uint16_t g_spcr0_spbrMask = 0xf;
constexpr uint16_t g_spcr1_speMask = (1<<15);
constexpr uint16_t g_spcr2_newqpMask = 0xf;
constexpr uint16_t g_spcr2_endqpMask = 0xf00;
constexpr uint16_t g_spcr2_SpifieMask = (1<<15);
constexpr uint16_t g_spcr2_wrenMask = (1<<14);
constexpr uint16_t g_spcr2_wrtoMask = (1<<13);
constexpr uint16_t g_spcr3_haltMask = (1<<8);
constexpr uint16_t g_spsr_cptqpMask = 0xf;
constexpr uint16_t g_spsr_spifMask = (1<<7);
constexpr uint16_t g_spsr_haltAckMask = (1<<5);
constexpr uint32_t g_sciRxDelay = 50;
Qsm::Qsm(Mc68k& _mc68k) : m_mc68k(_mc68k), m_qspi(*this)
{
write16(PeriphAddress::Spcr1, 0b0000010000000100);
write16(PeriphAddress::Qilr, 0b0000000000001111);
write16(PeriphAddress::SciStatus, 0b110000000);
}
void Qsm::write16(PeriphAddress _addr, uint16_t _val)
{
const auto prev = read16(_addr);
PeripheralBase::write16(_addr, _val);
switch (_addr)
{
case PeriphAddress::Spcr0:
// MCLOG("Set SPCR0 to " << MCHEXN(_val, 4));
return;
case PeriphAddress::Spcr1:
// MCLOG("Set SPCR1 to " << MCHEXN(_val, 4));
cancelTransmit();
if(!(prev & g_spcr1_speMask) && (_val & g_spcr1_speMask))
startTransmit();
return;
case PeriphAddress::Spcr2:
// MCLOG("Set SPCR2 to " << MCHEXN(_val, 4));
if(spcr1() & g_spcr1_speMask)
startTransmit();
break;
case PeriphAddress::Spcr3:
// MCLOG("Set SPCR3 to " << MCHEXN(_val, 4));
cancelTransmit();
// acknowledge halt if halt requested
if(!(prev & g_spcr3_haltMask) && (_val & g_spcr3_haltMask))
spsr(spsr() | g_spsr_haltAckMask);
break;
case PeriphAddress::Pqspar:
MCLOG("Set PQSPAR to " << MCHEXN(_val, 4));
m_portQS.enablePins(~(_val >> 8));
m_portQS.setDirection(_val & 0xff);
return;
case PeriphAddress::SciControl0:
MCLOG("Set SCCR0 to " << MCHEXN(_val, 4));
return;
case PeriphAddress::SciControl1:
// MCLOG("Set SCCR1 to " << MCHEXN(_val, 4));
if(bitTest(_val, Sccr1Bits::TransmitInterruptEnable) && !bitTest(prev, Sccr1Bits::TransmitInterruptEnable))
injectInterrupt(ScsrBits::TransmitDataRegisterEmpty);
return;
case PeriphAddress::SciStatus:
MCLOG("Set SCSR to " << MCHEXN(_val, 4));
return;
case PeriphAddress::SciData:
writeSciData(_val);
return;
}
// MCLOG("write16 addr=" << MCHEXN(_addr, 8) << ", val=" << MCHEXN(_val,4));
}
uint16_t Qsm::read16(PeriphAddress _addr)
{
switch (_addr)
{
case PeriphAddress::SciStatus:
return readSciStatus();
case PeriphAddress::SciData:
return readSciRX();
case PeriphAddress::Portqs:
return m_portQS.read();
case PeriphAddress::SciControl0:
case PeriphAddress::SciControl1:
return PeripheralBase::read16(_addr);
}
// MCLOG("read16 addr=" << MCHEXN(_addr, 8) << ", pc=" << MCHEXN(m_mc68k.getPC(), 6));
return PeripheralBase::read16(_addr);
}
void Qsm::write8(PeriphAddress _addr, uint8_t _val)
{
// MCLOG("write8 addr=" << MCHEXN(_addr, 8) << ", val=" << MCHEXN(static_cast<int>(_val),2));
if(_addr == PeriphAddress::SciControl1LSB)
{
write16(PeriphAddress::SciControl1, (read16(PeriphAddress::SciControl1) & 0xff00) | _val);
return;
}
const auto prev = read16(_addr);
PeripheralBase::write8(_addr, _val);
const auto newVal = read16(_addr);
switch (_addr)
{
case PeriphAddress::Spcr1:
if(!(prev & g_spcr1_speMask) && (newVal & g_spcr1_speMask))
startTransmit();
return;
case PeriphAddress::Spcr2:
// MCLOG("Set SPCR2 to " << MCHEXN(_val, 4));
if(spcr1() & g_spcr1_speMask)
startTransmit();
return;
case PeriphAddress::Spcr3:
cancelTransmit();
// acknowledge halt if halt requested
if(!(prev & g_spcr3_haltMask) && (newVal & g_spcr3_haltMask))
spsr(spsr() | g_spsr_haltAckMask);
return;
case PeriphAddress::Ddrqs:
MCLOG("Set DDRQS to " << MCHEXN(_val, 2));
m_portQS.setDirection(_val);
return;
case PeriphAddress::Pqspar:
MCLOG("Set PQSPAR to " << MCHEXN(_val, 2));
m_portQS.enablePins(~_val);
return;
case PeriphAddress::Portqs:
MCLOG("Set PortQS to " << MCHEXN(_val,2));
m_portQS.writeTX(_val);
return;
case PeriphAddress::SciDataLSB:
writeSciData(_val);
return;
case PeriphAddress::SciData:
writeSciData(static_cast<uint16_t>(static_cast<uint32_t>(_val) << 8));
return;
case PeriphAddress::SciStatus:
MCLOG("Set SCSR to " << MCHEXN(_val, 2));
return;
}
}
uint8_t Qsm::read8(const PeriphAddress _addr)
{
switch (_addr)
{
case PeriphAddress::Portqs:
return m_portQS.read();
case PeriphAddress::SciStatus:
return readSciStatus() >> 8;
case PeriphAddress::SciData:
return read16(PeriphAddress::SciData) >> 8;
case PeriphAddress::SciDataLSB:
return read16(PeriphAddress::SciData) & 0xff;
case PeriphAddress::SciControl1LSB:
case PeriphAddress::Qilr:
case PeriphAddress::Qivr:
case PeriphAddress::Spsr:
return PeripheralBase::read8(_addr);
}
// MCLOG("read8 addr=" << MCHEXN(_addr, 8) << ", pc=" << MCHEXN(m_mc68k.getPC(), 6));
return PeripheralBase::read8(_addr);
}
void Qsm::injectInterrupt(ScsrBits)
{
const uint8_t vector = PeripheralBase::read8(PeriphAddress::Qivr) & 0xfe;
const auto levelQsci = static_cast<uint8_t>(PeripheralBase::read8(PeriphAddress::Qilr) & 0x7);
m_mc68k.injectInterrupt(vector, levelQsci);
}
void Qsm::exec(const uint32_t _deltaCycles)
{
PeripheralBase::exec(_deltaCycles);
m_qspi.exec();
if(m_nextQueue != 0xff)
{
if(m_spiDelay > 0)
--m_spiDelay;
else
execTransmit();
}
// SCI
if(m_pendingTxDataCounter == 2)
{
--m_pendingTxDataCounter;
set(ScsrBits::TransmitDataRegisterEmpty);
if(bitTest(Sccr1Bits::TransmitInterruptEnable))
injectInterrupt(ScsrBits::TransmitDataRegisterEmpty);
}
else if(m_pendingTxDataCounter == 1)
{
--m_pendingTxDataCounter;
set(ScsrBits::TransmitComplete);
if(bitTest(Sccr1Bits::TransmitCompleteInterruptEnable))
injectInterrupt(ScsrBits::TransmitComplete);
}
if(m_sciRxDelay > 0)
{
--m_sciRxDelay;
return;
}
if(m_sciRxDataEmpty)
return;
if(!bitTest(Sccr1Bits::ReceiverEnable))
{
// MCLOG("Discarding SCI data " << MCHEXN(m_sciRxData.front(), 4) << ", receiver not enabled");
// m_sciRxData.pop_front();
return;
}
if(!bitTest(ScsrBits::ReceiveDataRegisterFull))
{
set(ScsrBits::ReceiveDataRegisterFull);
if(bitTest(Sccr1Bits::ReceiverInterruptEnable))
injectInterrupt(ScsrBits::ReceiveDataRegisterFull);
}
}
void Qsm::writeSciRX(uint16_t _data)
{
std::lock_guard lock(m_mutexSciRx);
m_sciRxData.push_back(_data);
m_sciRxDataEmpty = false;
}
void Qsm::readSciTX(std::deque<uint16_t>& _dst)
{
std::lock_guard lock(m_mutexSciTx);
m_sciTxData.swap(_dst);
m_sciTxData.clear();
}
void Qsm::setSpiWriteCallback(const SpiTxCallback& _callback)
{
m_spiTxCallback = _callback;
if(!m_spiTxCallback)
m_spiTxCallback = [](uint16_t, uint8_t) {};
}
void Qsm::setSpiWriteFinishCallback(const SpiTxFinishCallback& _callback)
{
m_spiTxFinishCallback = _callback;
if(!m_spiTxFinishCallback)
m_spiTxFinishCallback = [](uint8_t) {};
}
void Qsm::startTransmit(const bool _startAtZero/* = false*/)
{
// are we master?
if(!(spcr0() & g_spcr0_mstrMask))
return;
// MCLOG("Start SPI transmission");
const auto cr3 = spcr3();
const auto halt = cr3 & g_spcr3_haltMask;
if(halt)
return;
// clear completion flag
spsr(spsr() & ~g_spsr_spifMask);
m_nextQueue = _startAtZero ? 0 : (spcr2() & g_spcr2_newqpMask);
}
void Qsm::execTransmit()
{
const auto cr3 = spcr3();
const auto halt = cr3 & g_spcr3_haltMask;
if(halt)
return;
if(spsr() & g_spsr_spifMask)
return;
// "SPI Baud Rate = System Clock / (2*SPBR)"
const auto br = spcr0() & g_spcr0_spbrMask;
m_spiDelay = br << 1;
// push out data
const auto data = PeripheralBase::read16(transmitRamAddr(m_nextQueue));
m_spiTxData.push_back(data);
m_spiTxCallback(data, m_nextQueue);
// update completed queue index
auto sr = spsr();
sr &= ~g_spsr_cptqpMask;
sr |= m_nextQueue;
spsr(sr);
// advance to next or end
++m_nextQueue;
const auto endqp = (spcr2() & g_spcr2_endqpMask) >> 8;
const auto finished = m_nextQueue > endqp;
if(finished)
{
finishTransfer();
}
}
void Qsm::cancelTransmit()
{
m_nextQueue = 0xff;
// set completion flag
spsr(spsr() | g_spsr_spifMask);
// clear enabled flag
// auto cr1 = spcr1();
// cr1 &= ~g_spcr1_speMask;
// spcr1(cr1);
}
uint16_t Qsm::bitTest(uint16_t _value, Sccr1Bits _bit)
{
return _value & (1<<static_cast<uint32_t>(_bit));
}
uint16_t Qsm::bitTest(Sccr1Bits _bit)
{
return bitTest(read16(PeriphAddress::SciControl1), _bit);
}
uint16_t Qsm::bitTest(ScsrBits _bit)
{
return read16(PeriphAddress::SciStatus) & (1<<static_cast<uint32_t>(_bit));
}
void Qsm::clear(ScsrBits _bit)
{
auto v = PeripheralBase::read16(PeriphAddress::SciStatus);
v &= ~(1<<static_cast<uint32_t>(_bit));
PeripheralBase::write16(PeriphAddress::SciStatus, v);
}
void Qsm::set(ScsrBits _bit)
{
auto v = PeripheralBase::read16(PeriphAddress::SciStatus);
v |= (1<<static_cast<uint32_t>(_bit));
PeripheralBase::write16(PeriphAddress::SciStatus, v);
}
uint16_t Qsm::readSciRX()
{
std::lock_guard lock(m_mutexSciRx);
if(m_sciRxData.empty())
{
// MCLOG("Empty SCI read");
return 0;
}
clear(ScsrBits::ReceiveDataRegisterFull);
const auto res = m_sciRxData.front();
m_sciRxData.pop_front();
m_sciRxDataEmpty = m_sciRxData.empty();
m_sciRxDelay = g_sciRxDelay;
return res;
}
void Qsm::finishTransfer()
{
m_spiTxFinishCallback(m_nextQueue);
m_nextQueue = 0xff;
// set completion flag
spsr(spsr() | g_spsr_spifMask);
const auto cr2 = spcr2();
const auto cr3 = spcr3();
const auto wrap = cr2 & g_spcr2_wrenMask;
const auto halt = cr3 & g_spcr3_haltMask;
if(!wrap || halt)
{
// clear enabled flag
auto cr1 = spcr1();
cr1 &= ~g_spcr1_speMask;
spcr1(cr1);
}
if(cr2 & g_spcr2_SpifieMask)
{
// fire interrupt
const auto vector = PeripheralBase::read8(PeriphAddress::Qivr) | 1;
const auto levelQspi = static_cast<uint8_t>((PeripheralBase::read8(PeriphAddress::Qilr) >> 3) & 0x7);
if(!m_mc68k.hasPendingInterrupt(vector, levelQspi))
m_mc68k.injectInterrupt(vector, levelQspi);
}
if(wrap && !halt)
{
const auto wrapToZero = !(cr2 & g_spcr2_wrtoMask);
startTransmit(wrapToZero);
}
if(halt)
{
// acknowledge halt
spsr(spsr() | g_spsr_haltAckMask);
}
}
PeriphAddress Qsm::transmitRamAddr(const uint8_t _offset)
{
return static_cast<PeriphAddress>(static_cast<uint32_t>(PeriphAddress::TransmitRam0) + (_offset<<1));
}
PeriphAddress Qsm::receiveRamAddr(const uint8_t _offset)
{
return static_cast<PeriphAddress>(static_cast<uint32_t>(PeriphAddress::ReceiveRam0) + (_offset<<1));
}
void Qsm::writeSciData(const uint16_t _data)
{
if(!bitTest(Sccr1Bits::TransmitterEnable))
return;
{
std::lock_guard lock(m_mutexSciTx);
m_sciTxData.push_back(_data);
}
m_pendingTxDataCounter = 2;
}
uint16_t Qsm::readSciStatus()
{
// we're always done with everything
set(ScsrBits::TransmitDataRegisterEmpty);
set(ScsrBits::TransmitComplete);
const auto r = PeripheralBase::read16(PeriphAddress::SciStatus);
// MCLOG("Read SCSR, res=" << MCHEXN(r, 4));
return r;
}
}