-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMain.hs
574 lines (539 loc) · 25.2 KB
/
Main.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
module Main where
import Control.Exception (AsyncException (..))
import Control.Monad.Catch (catch)
import Control.Monad.Except
import Control.Monad.Reader
import Data.Version
import Data.List
import Text.Regex.Posix
import System.Environment
import System.Directory (getHomeDirectory)
import System.FilePath ((</>))
import System.Console.Haskeline
import System.Console.GetOpt
import System.Exit (ExitCode (..), exitWith)
import Language.Egison
import qualified Language.Egison.CmdOptions as ET
import Language.Egison.Completion (completeEgison)
import qualified Language.Egison.Parser.NonS as Parser
import qualified Paths_egison_tutorial as P
main :: IO ()
main = do args <- getArgs
let (actions, _, _) = getOpt Permute tOptions args
let tOpts = foldl (flip id) defaultEgisonTutorialOpts actions
runWithEgisonTutorialOpts tOpts
runWithEgisonTutorialOpts :: EgisonTutorialOpts -> IO ()
runWithEgisonTutorialOpts EgisonTutorialOpts{ tOptShowSections = True } = putStrLn $ show tutorial
runWithEgisonTutorialOpts EgisonTutorialOpts{ tOptSection = Just sn, tOptSubSection = Just ssn } = do
let sn' = (read sn) :: Int
let ssn' = (read ssn) :: Int
let ret = case tutorial of
Tutorial ss ->
if 0 < sn' && sn' <= length ss
then case nth sn' ss of
Section _ cs ->
if 0 < ssn' && ssn' <= length cs
then showContent $ nth ssn' cs
else "error: content out of range"
else "error: section out of range"
putStrLn ret
runWithEgisonTutorialOpts EgisonTutorialOpts{ tOptShowHelp = True } = printHelp
runWithEgisonTutorialOpts EgisonTutorialOpts{ tOptShowVersion = True } = printVersionNumber
runWithEgisonTutorialOpts EgisonTutorialOpts{ tOptPrompt = prompt } = evalRuntimeT ET.defaultOption { optPrompt = prompt } run
run :: RuntimeM ()
run = do
opts <- ask
coreEnv <- initialEnv
mEnv <- fromEvalT $ evalTopExprs coreEnv $ map Load (optLoadLibs opts) ++ map LoadFile (optLoadFiles opts)
case mEnv of
Left err -> liftIO $ print err
Right env -> repl env
data EgisonTutorialOpts = EgisonTutorialOpts {
tOptShowVersion :: Bool,
tOptShowHelp :: Bool,
tOptPrompt :: String,
tOptShowSections :: Bool,
tOptSection :: Maybe String,
tOptSubSection :: Maybe String
}
defaultEgisonTutorialOpts :: EgisonTutorialOpts
defaultEgisonTutorialOpts = EgisonTutorialOpts {
tOptShowVersion = False,
tOptShowHelp = False,
tOptPrompt = "> ",
tOptShowSections = False,
tOptSection = Nothing,
tOptSubSection = Nothing
}
tOptions :: [OptDescr (EgisonTutorialOpts -> EgisonTutorialOpts)]
tOptions = [
Option ['v', 'V'] ["version"]
(NoArg (\tOpts -> tOpts {tOptShowVersion = True}))
"show version number",
Option ['h', '?'] ["help"]
(NoArg (\tOpts -> tOpts {tOptShowHelp = True}))
"show usage information",
Option ['p'] ["prompt"]
(ReqArg (\prompt tOpts -> tOpts {tOptPrompt = prompt})
"String")
"set prompt string",
Option ['l'] ["list"]
(NoArg (\tOpts -> tOpts {tOptShowSections = True}))
"show section list",
Option ['s'] ["section"]
(ReqArg (\sn tOpts -> tOpts {tOptSection = Just sn})
"String")
"set section number",
Option ['c'] ["subsection"]
(ReqArg (\ssn tOpts -> tOpts {tOptSubSection = Just ssn})
"String")
"set subsection number"
]
printHelp :: IO ()
printHelp = do
putStrLn "Usage: egison-tutorial [options]"
putStrLn ""
putStrLn "EgisonTutorialOpts:"
putStrLn " --help Display this information"
putStrLn " --version Display egison version information"
putStrLn " --prompt string Set prompt of the interpreter"
putStrLn ""
exitWith ExitSuccess
printVersionNumber :: IO ()
printVersionNumber = do
putStrLn $ showVersion P.version
exitWith ExitSuccess
showBanner :: IO ()
showBanner = do
putStrLn $ "Egison Tutorial Version " ++ showVersion P.version
putStrLn $ "Welcome to Egison Tutorial!"
putStrLn $ "** Information **"
putStrLn $ "We can use a \"Tab\" key to complete keywords on the interpreter."
putStrLn $ "If we type a \"Tab\" key after a closed parenthesis, the next closed parenthesis will be completed."
putStrLn $ "*****************"
showFinishMessage :: IO ()
showFinishMessage = do
putStrLn $ "You have finished this section."
putStrLn $ "Thank you!"
showByebyeMessage :: IO ()
showByebyeMessage = do
putStrLn $ "Leaving Egison Tutorial.\nByebye."
yesOrNo :: String -> IO Bool
yesOrNo question = do
input <- liftIO $ runInputT nonReplSettings $ getInputLine $ question ++ " (Y/n): "
case input of
Nothing -> return True
(Just "") -> return True
(Just "y") -> return True
(Just "Y") -> return True
(Just "n") -> return False
(Just "N") -> return False
_ -> yesOrNo question
nth :: Int -> [a] -> a
nth n = head . drop (n - 1)
selectSection :: Tutorial -> IO Section
selectSection tutorial@(Tutorial sections) = do
putStrLn $ take 30 $ repeat '='
putStrLn $ "List of sections in the tutorial."
putStrLn $ show tutorial
putStrLn $ take 30 $ repeat '='
putStrLn $ "Choose a section to learn."
n <- getNumber (length sections)
return $ nth n sections
getNumber :: Int -> IO Int
getNumber n = do
input <- liftIO $ runInputT nonReplSettings $ getInputLine $ "(1-" ++ show n ++ "): "
case input of
(Just "1") -> return 1
(Just "2") -> return 2
(Just "3") -> return 3
(Just "4") -> return 4
(Just "5") -> return 5
(Just "6") -> return 6
(Just "7") -> return 7
_ -> do
putStrLn "Invalid input!"
getNumber n
-- |Get Egison expression from the prompt. We can handle multiline input.
getEgisonExprOrNewLine :: InputT RuntimeM (Either Bool (String, TopExpr))
getEgisonExprOrNewLine = getEgisonExprOrNewLine' ""
getEgisonExprOrNewLine' :: String -> InputT RuntimeM (Either Bool (String, TopExpr))
getEgisonExprOrNewLine' prev = do
opts <- lift ask
mLine <- case prev of
"" -> getInputLine $ optPrompt opts
_ -> getInputLine $ replicate (length (optPrompt opts)) ' '
case mLine of
Nothing -> return $ Left False -- The user's input is 'Control-D'.
Just [] -> return $ Left True -- The user's input is 'Enter'.
Just line -> do
let input = prev ++ line
parsedExpr <- lift $ Parser.parseTopExpr input
case parsedExpr of
Left err | show err =~ "unexpected end of input" ->
getEgisonExprOrNewLine' (input ++ "\n")
Left err -> do
liftIO $ print err
getEgisonExprOrNewLine
Right topExpr -> return $ Right (input, topExpr)
replSettings :: MonadIO m => FilePath -> Env -> Settings m
replSettings home env = Settings
{ complete = completeEgison env
, historyFile = Just (home </> ".egison_history")
, autoAddHistory = True
}
nonReplSettings :: MonadIO m => Settings m
nonReplSettings = Settings
{ complete = noCompletion
, historyFile = Nothing
, autoAddHistory = False
}
repl :: Env -> RuntimeM ()
repl env = do
section <- liftIO $ selectSection tutorial
case section of
Section _ cs -> repl' env cs True
where
repl' :: Env -> [Content] -> Bool -> RuntimeM ()
repl' env [] _ = do
repl env
repl' env (content:contents) b = (do
if b
then liftIO $ putStrLn $ show content
else return ()
home <- liftIO $ getHomeDirectory
input <- runInputT (replSettings home env) $ getEgisonExprOrNewLine
case input of
-- The user input 'Control-D'.
Left False -> do
b <- liftIO $ yesOrNo "Do you want to quit?"
if b
then return ()
else do
b <- liftIO $ yesOrNo "Do you want to proceed next?"
if b
then repl' env contents True
else repl' env (content:contents) False
-- The user input just 'Enter'.
Left True -> do
b <- liftIO $ yesOrNo "Do you want to proceed next?"
if b
then repl' env contents True
else repl' env (content:contents) False
Right (topExpr, _) -> do
result <- fromEvalT (runTopExprStr env topExpr)
case result of
Left err -> do
liftIO $ putStrLn $ show err
repl' env (content:contents) False
Right (Just output, env') -> liftIO (putStrLn output) >> repl' env' (content:contents) False
Right (Nothing, env') -> repl' env' (content:contents) False)
`catch`
(\e -> case e of
UserInterrupt -> liftIO (putStrLn "") >> repl' env (content:contents) False
StackOverflow -> liftIO (putStrLn "Stack over flow!") >> repl' env (content:contents) False
HeapOverflow -> liftIO (putStrLn "Heap over flow!") >> repl' env (content:contents) False
_ -> liftIO (putStrLn "error!") >> repl' env (content:contents) False
)
data Tutorial = Tutorial [Section]
-- |title and contents
data Section = Section String [Content]
-- |explanation, examples, and exercises
data Content = Content String [String] [String]
instance Show Tutorial where
show = showTutorial
instance Show Section where
show = showSection
instance Show Content where
show = showContent
showTutorial :: Tutorial -> String
showTutorial (Tutorial sections) =
let n = length sections in
intercalate "\n" $ map (\(n, section) -> show n ++ ": " ++ show section) $ zip [1..n] sections
showSection :: Section -> String
showSection (Section title _) = title
showContent :: Content -> String
showContent (Content msg examples exercises) =
"====================\n" ++
msg ++ "\n" ++
(case examples of
[] -> ""
_ -> "\nExamples:\n" ++ (intercalate "\n" (map (\example -> " " ++ example) examples)) ++ "\n") ++
(case exercises of
[] -> ""
_ -> "\nExercises:\n" ++ (intercalate "\n" (map (\exercise -> " " ++ exercise) exercises)) ++ "\n") ++
"===================="
tutorial :: Tutorial
tutorial = Tutorial
[Section "Arithmetic"
[
Content "We can do arithmetic operations with \"+\", \"-\", \"*\", \"/\", and \"^\"."
["1 + 2", "30 - 15", "10 * 20", "20 / 5", "2 ^ 10"]
[],
Content "We support rational numbers."
["2 / 3 + 1 / 5", "4 / 8"]
[],
Content "We support floating-point numbers, too."
["10.2 + 1.3", "10.2 + 1"]
[],
Content "We can convert a rational number to a floating-point number using \"rtof\"."
["rtof (1 / 5)", "rtof (1 / 100)"]
[],
Content "We can handle lists of numbers.\nWe construct a list by enclosing its elements with \"[]\"."
["[]", "[10]", "[1, 2, 3, 4, 5]"]
[],
Content "Using the \"sum\" function, we can get the summation of the argument list."
["sum []", "sum [10]", "sum [1, 2, 3, 4, 5]"]
[],
Content "Using the \"take\" function, we can extract a head part of a list."
["take 3 [1, 2, 3, 4, 5]", "take 0 [1, 2, 3, 4, 5]"]
[],
Content "We can handle infinite lists.\nFor example, \"nats\" and \"primes\" are an infinite list that contains all natural numbers and prime numbers respectively.\nTry to extract a head part from them."
["take 10 nats", "take 30 nats", "take 10 primes", "take 30 primes"]
["What is the 100th prime number?"],
Content "We can create functions using the \"lambda\" notation.\nFunctions are written like \"\\x -> ... \"."
["(\\x -> x + 2) 10", "(\\x -> x ^ 2) 10"]
[],
Content "The \"map\" function applies the first argument function to each element of the second argument list.\nThe \"map\" function is one of the most important function in functional programming."
["map (\\x -> x * 2) [1, 2, 3, 4, 5]", "map (\\x -> 1 / x) [1, 2, 3, 4, 5]"]
["Try to create a sequence of numbers \"[1, 1/2, 1/3, 1/4, ..., 1/100]\"."],
Content "Try to calculate \"1 + (1/2)^2 + (1/3)^2 + (1/4)^2 + ... + (1/100)^2\".\nIn fact, \"1 + (1/2)^2 + (1/3)^2 + (1/4)^2 + ...\" converges to \"pi * pi / 6\".\nRemember that we can convert a rational number to a floating-point number with \"rtof\"."
["rtof (2 / 3)"]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Basics of functional programming"
[
Content "We can bind a value to a variable using \":=\" (not \"=\")."
["def x := 10", "x", "def y := 1 + x", "y"]
[],
Content "We support recursive definitions.\nRecursive definitions enable us to define a list with infinitely many elements.\nThe \"::\" infix operator adds the first argument to the head of the second argument list."
["def ones := 1 :: ones", "take 100 ones", "def nats := 1 :: map (\\n -> n + 1) nats", "take 100 nats", "def odds := 1 :: map (\\n -> n + 2) odds", "take 100 odds"]
["Try to define the infinite list of even numbers like [2, 4, 6, 8, 10, ...]."],
Content "Let's define functions and test them."
["def increment x := x + 1", "increment 10", "def avrage x y := (x + y) / 2", "average 10 20"]
[],
Content "We can change an infix operator to a prefix operator by enclosing the operator by \"()\".\nFor example, \"(+) 2 3\" is equivalent to \"2 + 3\"."
["(+) 2 3", "(/) 3 2"]
[],
Content "The \"foldl\" function gathers together all elements of the third argument list using the operator specified by the first argument.\nThe second argument is an initial value."
["foldl (+) 0 [1, 2, 3, 4, 5]", "foldl (*) 1 [1, 2, 3, 4, 5]", "def sum xs := foldl (+) 0 xs", "sum [1, 2, 3, 4, 5]"]
["Try to get the sum of from 1 to 100."],
Content "We can compare numbers using functions, \"=\", \"<\", \"<=\", \">\", \">=\".\nThese functions return boolean values, \"True\" and \"False\".\nFunctions that return boolean values are called \"predicates\"."
["1 = 1", "1 < 1", "1 <= 1", "1 > 1", "1 >= 1"]
[],
Content "Using the \"takeWhile\" function, we can get the prefix of the second argument list whose elements satisfy the predicate of the first argument.\n\"primes\" is a infinite list that contains all prime numbers."
["takeWhile (\\n -> n < 100) primes", "takeWhile (\\n -> n < 1000) primes"]
[],
Content "Using the \"filter\" function, we can extract all elements that satisfy the given predicate."
["take 100 (filter isEven nats)", "take 100 (filter isPrime nats)", "take 100 (filter (\\p -> (modulo p 4) = 1) primes)"]
["Try to enumerate the first 100 primes that are congruent to 3 modulo 4."],
Content "We can create a tuple by enclosing objects by \"()\".\n\nNote that a tuple that consists of only one element is equal to that element itself."
["(1, 2)", "(1, 2, 3)", "(1)", "((1))"]
[],
Content "Using the \"zip\" function, we can combine two lists as follows."
["take 100 (zip nats nats)", "take 100 (zip primes primes)"]
["Try to generate the prime table as \"[(1, 2), (2, 3), (3, 5), (4, 7), (5, 11), ...]\"."],
Content "Try to create a Fibonacci sequence \"[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...]\".\n\nHint:\n Replace \"???\" in the following expression to a proper function.\n def fibs := 1 :: 1 :: map ??? (zip fibs (tail fibs))"
[]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Basics of pattern matching"
[
Content "Let's try pattern matching for a list.\nThe \"join\" pattern (++) divides a list into two lists.\nNote that the matchAll expression enumerates all the decompositions."
["matchAll [1, 2, 3] as list integer with $hs ++ $ts -> (hs, ts)",
"matchAll [1, 2, 3, 4, 5] as list integer with $hs ++ $ts -> (hs, ts)"]
[],
Content "Try another pattern constructor \"cons\" (::).\nThe \"cons\" pattern (::) divides a list into the head element and the rest.\n"
["matchAll [1, 2, 3] as list integer with $x :: $xs -> (x ,xs)",
"matchAll [1, 2, 3, 4, 5] as list integer with $x :: $xs -> (x, xs)"]
[],
Content "\"_\" is a wildcard and matches with any objects."
["matchAll [1, 2, 3] as list integer with $x :: _ -> x",
"matchAll [1, 2, 3, 4, 5] as list integer with $hs ++ _ -> hs"]
[],
Content "We can write non-linear patterns.\nA non-linear pattern is a pattern that allows multiple occurrences of the same variables in a pattern.\nA pattern that begins with \"#\" matches the target when it is equal with the evaluation result of the expression after \"#\"."
["matchAll [1, 1, 2, 3, 3, 2] as list integer with _ ++ $x :: #x :: _ -> x",
"matchAll [1, 1, 2, 3, 3, 2] as list integer with _ ++ $x :: #(x + 1) :: _ -> x"]
[],
Content "Egison can handle pattern matching with infinitely many results.\nFor example, we can enumerate twin primes using pattern matching as follows."
["take 10 (matchAll primes as list integer with _ ++ $p :: #(p + 2) :: _ -> (p, p + 2))"]
["What is the 100th twin prime?"],
Content "Try to enumerate the first 10 prime pairs whose form is (p, p + 6) like \"[(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), ...]\"."
[]
[],
Content "A pattern that begins with \"!\" is called not-pattern.\nA not-pattern matches when the content of the not-pattern does not match the target."
["matchAll [1, 1, 2, 3, 3, 2] as list integer with _ ++ $x :: #x :: _ -> x",
"matchAll [1, 1, 2, 3, 3, 2] as list integer with _ ++ $x :: !#x :: _ -> x"]
[],
Content "A pattern whose form is \"p1 & p2\" is called and-pattern.\nAn and-pattern is a pattern that matches the target if and only if both \"p1\" and \"p2\" matches.\nThe and-pattern in the following sample is used like an as-pattern."
["take 10 (matchAll primes as list integer with _ ++ $p :: (!#(p + 2) & $q) :: _ -> (p, q))"]
[],
Content "A pattern whose form is \"p1 | p2\" is called or-pattern.\nAn or-pattern matches with the target, if \"p1\" or \"p2\" matches the target.\nIn the following sample, we enumerate prime triplets."
["take 10 (matchAll primes as list integer with _ ++ $p :: ($m & (#(p + 2) | #(p + 4))) :: #(p + 6) :: _ -> (p, m, (p + 6)))"]
["What is the 20th prime triplet?"],
Content "Try to enumerate the first 4 prime quadruples whose form is (p, p + 2, p + 6, p + 8) like \"[(5, 7, 11, 13), (11, 13, 17, 19), ...]\"."
[]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Pattern matching for multisets and sets"
[
Content "We can pattern-match a list as a multiset or set.\nWe can change the interpretation of patterns by changing the matcher, the second argument of the matchAll expression.\nThe meaning of the cons pattern (::) is generalized to divide a collection into \"an\" element and the rest."
["matchAll [1, 2, 3] as list integer with $x :: $xs -> (x, xs)",
"matchAll [1, 2, 3] as multiset integer with $x :: $xs -> (x, xs)",
"matchAll [1, 2, 3] as set integer with $x :: $xs -> (x, xs)"]
[],
Content "Try another pattern constructor \"join\" (++).\nThe \"join\" pattern (++) divides a collection into two collections."
["matchAll [1, 2, 3, 4, 5] as list integer with $xs ++ $ys -> (xs, ys)",
"matchAll [1, 2, 3, 4, 5] as multiset integer with $xs ++ $ys -> (xs, ys)",
"matchAll [1, 2, 3, 4, 5] as set integer with $xs ++ $ys -> (xs, ys)"]
[],
Content "Try non-linear pattern matching for multiset."
["matchAll [1, 2, 1, 3, 2] as multiset integer with $x :: #x :: _ -> x",
"matchAll [1, 2, 1, 3, 2] as multiset integer with $x :: #(x + 2) :: _ -> x",
"matchAll [1, 2, 1, 3, 2] as multiset integer with $x :: !(#(x + 2) :: _) -> x"]
[],
Content "Pattern matching of Egison efficiently backtracks for non-linear patterns.\nFor example, all the following pattern-matching expressions are processed in O(n^2)."
["matchAll [1..30] as multiset integer with $x :: #x :: _ -> x",
"matchAll [1..30] as multiset integer with $x :: #x :: #x :: _ -> x",
"matchAll [1..30] as multiset integer with $x :: #x :: #x :: #x _ -> x"]
[],
Content "Egison is designed to enumerate all the infinitely many pattern-matching results.\nThe following samples enumerate all the pairs and triplets of natural numbers."
["matchAll nats as set integer with $x :: $y :: _ -> (x, y)",
"matchAll nats as set integer with $x :: $y :: $z :: _ -> (x, y, z)"]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Symbolic computation"
[
Content "Egison treats unbound variables as a symbol."
["x + 1",
"x + x",
"2 * x + y"]
[],
Content "Egison automatically expands an expression to the canonical form."
["(x + y) * (x + y)",
"(x + y)^2",
"(x + y)^3"]
[],
Content "Egison can handle complex numbers.\n\"i\" represents the imaginary unit."
["i * i",
"(1 + i)^2",
"(1 + i)^4"]
[],
Content "Egison can handle algebraic numbers such as \"sqrt 2\" and \"sqrt 3\"."
["sqrt 12",
"sqrt 2 * sqrt 2",
"sqrt 2 * sqrt 3",
"(rt 3 2)^3"]
[],
Content "Egison can handle the trigonometric functions such as \"cos θ\" and \"sin θ\"."
["(cos θ)^2 + (sin θ)^2"]
[],
Content "Here are several samples for symbolic computation in Egison.\nPlease visit the link!\nhttps://www.egison.org/math/"
[
]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Differential geometry: tensor analysis"
[
Content "We can handle vectors.\nWe construct vectors with \"[| |]\"."
["[| 1, 2, 3 |]",
"[| 1, 2, 3 |] + [| 1, 2, 3 |]"
]
[],
Content "We can append a symbolical index to vectors."
["[| 1, 2, 3 |]_i + [| 1, 2, 3 |]_i",
"[| 1, 2, 3 |]_i + [| 1, 2, 3 |]_j"
]
[],
Content "The \".\" function is a function for multiplying tensors."
["[| 1, 2, 3 |]_i . [| 1, 2, 3 |]_i",
"[| 1, 2, 3 |]_i . [| 1, 2, 3 |]_j"
]
[],
Content "We can handle both of superscripts (~) and subscripts(_).\nThe \".\" function supports Einstein summation notation."
["[| 1, 2, 3 |]~i . [| 1, 2, 3 |]_i"
]
[],
Content "Matrix is represented as a vector of vectors."
["[| [| 1, 2, 3 |], [| 10, 20, 30 |] |]"
]
[],
Content "Matrix multiplication is represented as follows using tensor index notation."
["[| [| a, b |], [| c, d |] |]~i_j . [| [| x, y |], [| z, w |] |]~j_k"
]
[],
Content "The function defined using scalar parameters (prepended by \"$\") are automatically mapped to each component of tensors."
["def min $x $y := if x < y then x else y",
"min [| 1, 2, 3 |]_i [| 10, 20, 30 |]_i",
"min [| 1, 2, 3 |]_i [| 10, 20, 30 |]_j"
]
[],
Content "The function defined using tensor parameters (prepended by \"%\") treats a tensor as a whole.\nIf we prepend "
["def det2 %X := X_1_1 * X_2_2 - X_1_2 * X_2_1",
"det2 [| [| 2, 1 |], [| 1, 2 |] |]",
"det2 [| [| a, b |], [| c, d |] |]"
]
[],
Content "Here are several samples of tensor analysis in programming.\nPlease visit the link!\nhttps://www.egison.org/math/"
[
]
[],
Content "This is the end of this section.\nPlease play freely or proceed to the next section.\nThank you for enjoying our tutorial!"
[]
[]
],
Section "Differential geometry: differential forms"
[
Content "By default, the same indices are completed to each tensor of the arguments."
["[| 1, 2, 3 |] + [| 1, 2, 3 |] -- => [| 1, 2, 3 |]_t1 + [| 1, 2, 3 |]_t1"
]
[],
Content "When “!” is prepended to the function application, the different indices are completed to each tensor of the arguments."
["[| 1, 2, 3 |] !+ [| 1, 2, 3 |] -- => [| 1, 2, 3 |]_t1 + [| 1, 2, 3 |]_t2"
]
[],
Content "1-forms on Euclid space and Wedge product are represented as follows.\n\"!\" is effectively used in the definition of Wedge product."
["def dx := [| 1, 0, 0 |]",
"def dy := [| 0, 1, 0 |]",
"def dz := [| 0, 0, 1 |]",
"def wedge %A %B := A !. B",
"wedge dx dy"
]
[],
Content "The \"dfNormalize\" function converts a differential form to the antisymmetric tensor."
["wedge dx dy",
"dfNormalize (wedge dx dy)"
]
[],
Content "Exterior derivative is defined as follows.\n\"!\" is effectively used in the definition of exterior derivative."
["def params := [| x, y, z |]",
"def d %A := !((flip ∂/∂) params A)",
"d (f x y z)",
"d (d (f x y z))",
"dfNormalize (d (d (f x y z)))"
]
[],
Content "Here are several samples for representing differential forms in programming.\nPlease visit the link!\nhttps://www.egison.org/math/"
[
]
[],
Content "This is the end of our tutorial.\nThank you for enjoying our tutorial!\nPlease check our paper, manual and code for further reference!"
[]
[]
]
]