-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathDocument_QA.py
135 lines (118 loc) · 4.79 KB
/
Document_QA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import openai
import faiss
import numpy as np
import pickle
from tqdm import tqdm
import argparse
import os
def create_embeddings(input):
"""Create embeddings for the provided input."""
result = []
# limit about 1000 tokens per request
lens = [len(text) for text in input]
query_len = 0
start_index = 0
tokens = 0
def get_embedding(input_slice):
embedding = openai.Embedding.create(model="text-embedding-ada-002", input=input_slice)
return [(text, data.embedding) for text, data in zip(input_slice, embedding.data)], embedding.usage.total_tokens
for index, l in tqdm(enumerate(lens)):
query_len += l
if query_len > 4096:
ebd, tk = get_embedding(input[start_index:index + 1])
query_len = 0
start_index = index + 1
tokens += tk
result.extend(ebd)
if query_len > 0:
ebd, tk = get_embedding(input[start_index:])
tokens += tk
result.extend(ebd)
return result, tokens
def create_embedding(text):
"""Create an embedding for the provided text."""
embedding = openai.Embedding.create(model="text-embedding-ada-002", input=text)
return text, embedding.data[0].embedding
class QA():
def __init__(self,data_embe) -> None:
d = 1536
index = faiss.IndexFlatL2(d)
embe = np.array([emm[1] for emm in data_embe])
data = [emm[0] for emm in data_embe]
index.add(embe)
self.index = index
self.data = data
def __call__(self, query):
embedding = create_embedding(query)
context = self.get_texts(embedding[1], limit)
answer = self.completion(query,context)
return answer,context
def get_texts(self,embeding,limit):
_,text_index = self.index.search(np.array([embeding]),limit)
context = []
for i in list(text_index[0]):
context.extend(self.data[i:i+5])
# context = [self.data[i] for i in list(text_index[0])]
return context
def completion(self,query, context):
"""Create a completion."""
lens = [len(text) for text in context]
maximum = 3000
for index, l in enumerate(lens):
maximum -= l
if maximum < 0:
context = context[:index + 1]
print("超过最大长度,截断到前", index + 1, "个片段")
break
text = "\n".join(f"{index}. {text}" for index, text in enumerate(context))
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{'role': 'system',
'content': f'你是一个有帮助的AI文章助手,从下文中提取有用的内容进行回答,不能回答不在下文提到的内容,相关性从高到底排序:\n\n{text}'},
{'role': 'user', 'content': query},
],
)
print("使用的tokens:", response.usage.total_tokens)
return response.choices[0].message.content
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Document QA")
parser.add_argument("--input_file", default="input.txt", dest="input_file", type=str,help="输入文件路径")
parser.add_argument("--file_embeding", default="input_embed.pkl", dest="file_embeding", type=str,help="文件embeding文件路径")
parser.add_argument("--print_context", action='store_true',help="是否打印上下文")
args = parser.parse_args()
if os.path.isfile(args.file_embeding):
data_embe = pickle.load(open(args.file_embeding,'rb'))
else:
with open(args.input_file,'r',encoding='utf-8') as f:
texts = f.readlines()
texts = [text.strip() for text in texts if text.strip()]
data_embe,tokens = create_embeddings(texts)
pickle.dump(data_embe,open(args.file_embeding,'wb'))
print("文本消耗 {} tokens".format(tokens))
qa =QA(data_embe)
limit = 10
while True:
query = input("请输入查询(help可查看指令):")
if query == "quit":
break
elif query.startswith("limit"):
try:
limit = int(query.split(" ")[1])
print("已设置limit为", limit)
except Exception as e:
print("设置limit失败", e)
continue
elif query == "help":
print("输入limit [数字]设置limit")
print("输入quit退出")
continue
answer,context = qa(query)
if args.print_context:
print("已找到相关片段:")
for text in context:
print('\t', text)
print("=====================================")
print("回答如下\n\n")
print(answer.strip())
print("=====================================")