-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
52 lines (34 loc) · 1.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def main(args):
X_train,y_train, X_test, y_test = get_dataset('StarLightCurves')
y_train = y_train-1
y_test = y_test-1
shapelet_lengths = list(range(args.min_shap_len,args.max_shap_len+1, args.step_shap_len))
fs = FastShapelets(shapelet_lengths=shapelet_lengths, cardinality=args.cardinality, dimensionality=args.dimensionality, r=args.r, n_jobs=args.n_jobs, verbose=args.verbose)
fs.fit(X_train, y_train)
fn_save = f'shap_{args.min_shap_len}_{args.max_shap_len+1}_{args.step_shap_len}.pkl'
with open(fn_save, 'wb') as f:
pickle.dump(fs.get_shapelets(), f)
print(f'file saved at {fn_save}')
if __name__ == '__main__' :
import sys
import os
import pickle
import argparse
if 'fast_shapelets' not in [el.split('/')[-1] for el in sys.path]:
curr_path = os.getcwd()
sys.path.append('/'.join((curr_path.split('/')[:-1])))
from src import get_dataset, FastShapelets
import numpy as np
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
# Dataset and dataloader
parser.add_argument("--n_jobs", type=int, default=1, help="n jobs")
parser.add_argument("--min_shap_len", type=int, default=100, help="min_shap_len")
parser.add_argument("--max_shap_len", type=int, default=500, help="max_shap_len")
parser.add_argument("--step_shap_len", type=int, default=50, help="step_shap_len")
parser.add_argument("--cardinality", type=int, default=4, help="cardinality")
parser.add_argument("--dimensionality", type=int, default=16, help="dimensionality")
parser.add_argument("--r", type=int, default=10, help="r")
parser.add_argument("--verbose", type=int, default=2, help="verbose")
args = parser.parse_args()
main(args)