-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinset.cc
930 lines (764 loc) · 32.5 KB
/
inset.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/************************************************************************/
/* */
/* zimt - abstraction layer for SIMD programming */
/* */
/* Copyright 2024 by Kay F. Jahnke */
/* */
/* The git repository for this software is at */
/* */
/* https://github.com/kfjahnke/zimt */
/* */
/* Please direct questions, bug reports, and contributions to */
/* */
/* [email protected] */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
// This is a test program for zimt's recently acquired b-spline
// processing capabilites and also serves to measure performance of the
// b-spline evaluation code with splines of various degrees and boundary
// conditions and varying SIMD back-ends/ISAs. This variant is to make
// several SIMD-ISA-specific separate TUs which are linked to the main
// program.
// To create the ISA-specific TUs, compile like this:
//
// for isa in SSE2 SSSE3 SSE4 AVX2 AVX3 AVX3_ZEN4 AVX3_SPR;
// do
// echo $isa;
// clang++ -DNS_ISA=N_$isa -DTG_ISA=HWY_$isa -DMULTI_SIMD_ISA \
// -DUSE_HWY -O3 -o inset_$isa.o -c inset.cc;
// done
//
// Then, you can link these TUs with the remainder of the program:
//
// clang++ -DUSE_HWY -O3 -std=gnu++17 -odisp_to_tu disp_to_tu.cc \
// -lhwy -DMULTI_SIMD_ISA -I. inset*.o basic.cc
// Note that MULTI_SIMD_ISA is #defined - we want the same behaviour
// as in a multi-SIMD-ISA build, but we'll only use a single ISA in
// this TU
// This header defines all the macros having to do with targets:
#include <hwy/detect_targets.h>
// glean the target as 'TG_ISA' from outside - this file is intended
// to produce ISA-specific separate TUs containing only binary for
// one given ISA, but assuming that other files of similar structure,
// but for different ISAs will also be made and all linked together
// with more code which actually makes use of the single-ISA TUs.
// 'Slotting in' the target ISA from the build system is enough to
// produce a SIMD-ISA-specific TU - all the needed specifics are
// derived from this single information. detect_targets.h sets
// HWY_TARGET to HWY_STATIC_TARGET, so we #undef it and use the
// target specification from outside instead.
#undef HWY_TARGET
#define HWY_TARGET TG_ISA
// now we #include highway.h - as we would do after foreach_target.h
// in a multi-ISA build. With foreach_target.h, the code is re-included
// several times, each time with a different ISA. Here we have set one
// specific ISA and there won't be any re-includes.
#include <hwy/highway.h>
// we define dispatch_base. This might go to a header 'dispatch.h',
// but note how the payload code is application-specific, so it
// can't be factored out.
struct dispatch_base
{
// in dispatch_base and derived classes, we keep two flags.
// 'backend' holds a value indicating which of zimt's back-end
// libraries is used. 'hwy_isa' is only set when the highway
// backend is used and holds highway's HWY_TARGET value for
// the given nested namespace.
int backend = -1 ;
unsigned long hwy_isa = 0 ;
// next we have pure virtual member function definitions for
// payload code. In this example, we only have one payload
// function which calls what would be 'main' in a simple
// program without multiple SIMD ISAs or SIMD back-ends
virtual int payload ( int argc , char * argv[] ) const = 0 ;
} ;
//////////////// Put the #includes needed for your program here:
// these three headers don't contain performance-critical code. We
// #include them here, before HWY_BEFORE_NAMESPACE() - they'll be made
// to use whatever baseline target is the default for a build without
// ISA-specifying compiler flags
#include <iostream>
#include <random>
#include <chrono>
// these two headers belong to the actual application - they are made
// to work in single- and multi-ISA builds alike and invoke
// HWY_BEFORE_NAMESPACE() where they need it
#include "geometry.h"
#include "stepper.h"
// now we invoke HWY_BEFORE_NAMESPACE() for this file, to make code
// down to HWY_AFTER_NAMESPACE() compile with settings for a specific
// target (via e.g. #pragmas to the compiler)
HWY_BEFORE_NAMESPACE() ;
// To conveniently rotate with a rotational quaternion, we employ
// Imath's 'Quat' data type, packaged in a zimt::unary_functor.
// This is not factored out because it requires inclusion of
// some Imath headers, which I want to keep out of the other
// code, e.g. in geometry.h, where it would fit in nicely.
// Note how we #include these headers *after* HWY_BEFORE_NAMESPACE().
// The Imath headers contain template metacode which we'll use with
// simdized data types, and if the #pragmas fixing the ISA aren't
// present, we only get baseline binary.
#include <Imath/ImathVec.h>
#include <Imath/ImathEuler.h>
#include <Imath/ImathQuat.h>
#include <Imath/ImathLine.h>
// now we begin an ISA-specific nested namespace of namespace project.
// Note that we have MULTI_SIMD_ISA #defined, so this macro is defined
// as for multi-SIMD-ISA builds.
// All the 'payload' code goes into this nested namespace, and because
// HWY_BEFORE_NAMESPACE() was used, it will be compiled for the given ISA.
BEGIN_ZIMT_SIMD_NAMESPACE(project)
// rotate_3d uses a SIMDized Imath Quaternion to affect a 3D rotation
// of a 3D SIMDized coordinate. Imath::Quat<float> can't broadcast
// to handle SIMDized input, but if we use an Imath::Quat of the
// SIMDized type, we get the desired effect for simdized input -
// hence the broadcasting to Imath::Quat<U> in 'eval', which
// has no effect for scalars, but represents a broadcast of the
// rotation to all lanes of the simdized quaternion's components.
// We'll use this functor to compare the output of steppers with
// built-in rotation to unrotated steppers with a subsequent
// rotation of the resulting 3D ray.
template < typename T , std::size_t L >
struct rotate_3d
: public zimt::unary_functor
< zimt::xel_t < T , 3 > , zimt::xel_t < T , 3 > , L >
{
typedef zimt::simdized_type < T , L > f_v ;
typedef zimt::xel_t < T , 3 > crd3_t ;
typedef zimt::simdized_type < crd3_t , L > crd3_v ;
Imath::Quat < T > q ;
rotate_3d ( T roll , T pitch , T yaw , bool inverse = false )
{
// set up the rotational quaternion. if 'inverse' is set, produce
// the conjugate.
if ( inverse )
{
Imath::Eulerf angles ( -yaw , -pitch , -roll , Imath::Eulerf::YXZ ) ;
q = angles.toQuat() ;
}
else
{
Imath::Eulerf angles ( roll , pitch , yaw , Imath::Eulerf::ZXY ) ;
q = angles.toQuat() ;
}
}
// eval applies the quaternion. Note how we use a template of
// typename U for the formulation. This way, we can handle both
// scalar and simdized arguments.
template < typename U >
void eval ( const zimt::xel_t < U , 3 > & in ,
zimt::xel_t < U , 3 > & out ) const
{
auto const & in_e
= reinterpret_cast < const Imath::Vec3 < U > & > ( in ) ;
auto & out_e
= reinterpret_cast < Imath::Vec3 < U > & > ( out ) ;
out_e = in_e * Imath::Quat < U > ( q ) ;
}
} ;
typedef zimt::xel_t < double , 2 > d2_t ;
typedef zimt::xel_t < double , 3 > d3_t ;
typedef zimt::simdized_type < d3_t , LANES > d3_v ;
template < typename pa , typename pb >
d3_t work ( d3_t _c3 )
{
// set up a ray-to-ray functor containing the two functors
// of type 'pa' and 'pb'. The ray-to-ray functor takes a
// 3D ray coordinate, converts it to a 2D coordinate with
// the projection codified in pa and then back to a ray
// with the projection codified in pb. Here, we test pa
// and pb using the same projection - in actual code, pa
// and pb might use different projections.
pa tf1 ;
pb tf2 ;
ray_to_ray < double , LANES > tf ( tf1 , tf2 ) ;
// we want to make sure that the pa and pb functors do
// their job with both scalar and simdized values, so we
// run the test also with a simdized evaluation.
d3_v cv ( _c3 ) ;
d3_t c3 ;
tf.eval ( _c3 , c3 ) ;
tf.eval ( cv , cv ) ;
// we test that the first lane of the vectorized output
// is very close to the scalar output. With some back-ends,
// the values are actually equal, but we can't rely on it.
assert ( std::abs ( cv[0][0] - c3[0] ) < .0000000000001 ) ;
assert ( std::abs ( cv[1][0] - c3[1] ) < .0000000000001 ) ;
assert ( std::abs ( cv[2][0] - c3[2] ) < .0000000000001 ) ;
// we compare input and output and make sure that they
// differ if at all then only minimally. Note how we compare
// the values after normalization - they may differ by a
// factor, because the code does not necessarily produce
// normalized output - nor is the input normalized.
assert ( std::abs ( _c3[0] / norm ( _c3 ) - c3[0] / norm ( c3 ) )
< .0000000000001 ) ;
assert ( std::abs ( _c3[1] / norm ( _c3 ) - c3[1] / norm ( c3 ) )
< .0000000000001 ) ;
assert ( std::abs ( _c3[2] / norm ( _c3 ) - c3[2] / norm ( c3 ) )
< .0000000000001 ) ;
return c3 ;
}
// we use a two-level dispatch to get from run-time values for
// the projections to types of conversion functors
template < typename pa >
d3_t route2 ( projection_t pb ,
d3_t c3 )
{
d3_t result ;
switch ( pb )
{
case SPHERICAL:
result = work < pa , ll_to_ray_t < double > > ( c3 ) ;
break ;
case CYLINDRICAL:
result = work < pa , cyl_to_ray_t < double > > ( c3 ) ;
break ;
case RECTILINEAR:
result = work < pa , rect_to_ray_t < double > > ( c3 ) ;
break ;
case FISHEYE:
result = work < pa , fish_to_ray_t < double > > ( c3 ) ;
break ;
case STEREOGRAPHIC:
result = work < pa , ster_to_ray_t < double > > ( c3 ) ;
break ;
case CUBEMAP:
result = work < pa , ir_to_ray_t < double > > ( c3 ) ;
break ;
default:
break ;
}
return result ;
}
d3_t route ( projection_t pa ,
projection_t pb ,
d3_t c3 )
{
d3_t result ;
switch ( pa )
{
case SPHERICAL:
result = route2 < ray_to_ll_t < double > > ( pb , c3 ) ;
break ;
case CYLINDRICAL:
result = route2 < ray_to_cyl_t < double > > ( pb , c3 ) ;
break ;
case RECTILINEAR:
// negative z axis doesn't work with rectilinear projection, hence:
c3[2] = std::abs ( c3[2] ) ;
result = route2 < ray_to_rect_t < double > > ( pb , c3 ) ;
break ;
case FISHEYE:
result = route2 < ray_to_fish_t < double > > ( pb , c3 ) ;
break ;
case STEREOGRAPHIC:
result = route2 < ray_to_ster_t < double > > ( pb , c3 ) ;
break ;
case CUBEMAP:
result = route2 < ray_to_ir_t < double > > ( pb , c3 ) ;
break ;
default:
break ;
}
return result ;
}
void test_r2r ( d3_t d3 )
{
d3_t result ;
// for this test, we set up a ray_to_... functor as first
// functor, then a ..._to_ray functor as second functor.
// The projection is the same for the two functors, but
// the direction of the transformation (3D->2D vs. 2D->3D)
// is opposite.
for ( int pa = SPHERICAL ; pa <= CUBEMAP ; pa++ )
{
int pb = pa ;
{
result = route ( projection_t(pa) ,
projection_t(pb) , d3 ) ;
}
}
}
// This is the top-level 'payload' function which the 'payload'
// member function of class dispatch will call. We could put this
// function directly into class dispatch, but I think it's clearer
// this way
int _payload ( int argc , char * argv[] )
{
// first, we run a test where we project rays to a planar surface
// and back to the ray. This should always succeed (except for
// rectilinear projection and negative z axis, which is avoided)
// because the resulting 2D coordinate can always regenerate the
// ray precisely, whereas the opposite operation (start with a
// planar coordinate, move to ray and back) will fail for certain
// planar coordinates - e.g. with spherical projection and y==0
// where the initial x coordinate can't be recovered.
std::mt19937 gen ; // Standard mersenne_twister_engine
std::uniform_real_distribution<> dis(-10.0, 10.0);
for ( std::size_t i = 0 ; i < 10000 ; i++ )
{
test_r2r ( { dis(gen) , dis(gen) , dis(gen) } ) ;
}
// Next, we populate arrays of ray coordinates with 'steppers'
// and test the result against arrays which are populated using
// the ..._to_ray_t functors. We also test against values gleaned
// by directly invoking the functors' eval function with input
// generated by a lambda directly from discrete coordinates.
// two equally-shaped target arrays take up the output of
// the stepper and the output from the plain conversion
// operator, which should be identical.
zimt::array_t < 2 , d3_t > a3 ( { 1000 , 500 } ) ;
zimt::array_t < 2 , d3_t > b3 ( { 1000 , 500 } ) ;
// first set up the stepper.
spherical_stepper < double , LANES >
sphs ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
1000 ,
500 ) ;
// use a zimt::process run to fill the first target array with
// output from the stepper. We use a pass_through act functor
// because we're only interested in the stepper's output.
zimt::process ( a3.shape , sphs ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
// now we set up parameters for the use of the conversion
// operator. The 2D coordinates - in model space units - run
// from (x0, y0) with a step of dx in the horizontal and dy
// in the vertical. Note how we're working with centered
// coordinates, as we would in a viewing context, where
// the images are draped in model space so that their center
// rides on the forward axis.
double x0 = ( a3.shape[0] - 1 ) / -2.0 ;
double y0 = ( a3.shape[1] - 1 ) / -2.0 ;
double dx = 2.0 * M_PI / a3.shape[0] ;
double dy = M_PI / a3.shape[1] ;
x0 *= dx ;
y0 *= dy ;
// this is the conversion operator:
ll_to_ray_t < double , LANES > ll_to_ray ;
// we set up a zimt linspace generator as input
zimt::linspace_t < double , 2 , 2 , LANES >
ls ( { x0 , y0 } , { dx , dy } ) ;
// and use zimt::process to populate the second target array
zimt::process ( b3.shape , ls , ll_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
// for the 'manual' test we set up a lambda which provides
// centered 2D model space coordinates for discrete coordinates
auto to_md = [&] ( std::size_t sx , std::size_t sy )
{
zimt::xel_t < double , 2 > crd2 ;
double & x ( crd2[0] ) ;
double & y ( crd2[1] ) ;
x = sx - ( a3.shape[0] - 1 ) / 2.0 ;
y = sy - ( a3.shape[1] - 1 ) / 2.0 ;
x *= 2.0 * M_PI / a3.shape[0] ;
y *= M_PI / a3.shape[1] ;
return crd2 ;
} ;
// now we feed the converter in a loop. We use the discrete
// coordinates to test the result values in arrays a3 and b3
// against the results we receive as we go.
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto crd2 = to_md ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
ll_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
// Now we set up a rotation functor, and a stepper with the
// same built-in rotation. We set up the rotation with three
// 'odd' values (no multiples of pi).
rotate_3d < double , LANES > r3 ( 1.0 , 2.0 , 3.0 ) ;
// Now we produce the three basis vectors for the rotated stepper
d3_t ex { 1.0 , 0.0 , 0.0 } ;
d3_t ey { 0.0 , 1.0 , 0.0 } ;
d3_t ez { 0.0 , 0.0 , 1.0 } ;
r3.eval ( ex , ex ) ;
r3.eval ( ey , ey ) ;
r3.eval ( ez , ez ) ;
spherical_stepper < double , LANES >
rsphs ( ex , ey , ez , 1000 , 500 ) ;
// use a zimt::process run to fill the first target array with
// output from the rotated stepper. We time this and the subsequent
// run with the alternative computation scheme to see how performance
// differs - on my system, using the rotated stepper is 30-50 % faster.
// Of course, this may be due to the fact that the application of the
// rotational quaternion with Imath uses a quaternion of simdized
// components, even though all lanes of these components are equal.
// So to really compare performance, we'd have to do the rotation
// 'manually', applying the scalar components, but I assume that
// the output would be roughly the same.
// A note about the results of the speed measurements: with the code,
// as it stands, compiling a single-SIMD-ISA binary with explicitly
// stated ISA flags results in significantly faster code for the
// second run - the one with the separate rotation after the coordinate
// transformation with ll_to_ray - compared to the multi-SIMD-ISA
// version of the program. Why is that? It's due to the use of Imath's
// quaternion code for the rotation. Imath is not adapted to use
// highway's foreach_target mechanism, so including the Imath headers
// for the first time instantiates the Imath types finally, and this
// happens with a low-grade ISA. Subsequent re-compilations with the
// foreach_target mechanism can't reinstatiate the templates, because
// the sentinels in the Imath headers blank out the code - Imath
// 'thinks' they have already been dealt with. This results in
// quaternion code which is hobbled to use only the instantiations
// from the first compilation, and this significantly degrades
// performance. For now, I see no way out of this dilemma, short of
// falling back to a scheme with several separate TUs for the SIMD
// ISAs. Note, though, that this problem affects only the code which
// we use to test that the steppers perform as expected! The steppers
// don't use Imath's quaternion code at all. This is why the first
// run below comes out equally fast in both modes of compilation,
// and it's another good reason to use steppers if possible.
std::chrono::system_clock::time_point start
= std::chrono::system_clock::now() ;
for ( int times = 0 ; times < 100 ; times++ )
zimt::process ( a3.shape , rsphs ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
std::chrono::system_clock::time_point end
= std::chrono::system_clock::now() ;
std::cout << "first run took: "
<< std::chrono::duration_cast<std::chrono::milliseconds>
( end - start ) . count()
<< " ms" << std::endl ;
// Now we fill b3 with the concatenation of the unrotated
// stepper and the rotation functor
start = std::chrono::system_clock::now() ;
for ( int times = 0 ; times < 100 ; times++ )
zimt::process ( b3.shape , ls , ll_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
end = std::chrono::system_clock::now() ;
std::cout << "second run took: "
<< std::chrono::duration_cast<std::chrono::milliseconds>
( end - start ) . count()
<< " ms" << std::endl ;
// and look at the results
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto d = abs ( a3 [ { x , y } ] - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
// we repeat the process for all projections.
cylindrical_stepper < double , LANES >
cyls ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , cyls ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
cyl_to_ray_t < double , LANES > cyl_to_ray ;
zimt::process ( b3.shape , ls ,
cyl_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto crd2 = to_md ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
cyl_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
cylindrical_stepper < double , LANES >
rcyls ( ex , ey , ez , 1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , rcyls ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
zimt::process ( b3.shape , ls , cyl_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto d = abs ( a3 [ { x , y } ] - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
rectilinear_stepper < double , LANES >
rects ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , rects ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
rect_to_ray_t < double , LANES > rect_to_ray ;
zimt::process ( b3.shape , ls ,
rect_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto crd2 = to_md ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
rect_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
rectilinear_stepper < double , LANES >
rrects ( ex , ey , ez , 1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , rrects ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
zimt::process ( b3.shape , ls , rect_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto d = abs ( a3 [ { x , y } ] - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
fisheye_stepper < double , LANES >
fishs ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , fishs ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
fish_to_ray_t < double , LANES > fish_to_ray ;
zimt::process ( b3.shape , ls ,
fish_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto crd2 = to_md ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
fish_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
fisheye_stepper < double , LANES >
rfishs ( ex , ey , ez , 1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , rfishs ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
zimt::process ( b3.shape , ls , fish_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto d = abs ( a3 [ { x , y } ] - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
stereographic_stepper < double , LANES >
sters ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , sters ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
ster_to_ray_t < double , LANES > ster_to_ray ;
zimt::process ( b3.shape , ls ,
ster_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto crd2 = to_md ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
ster_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
stereographic_stepper < double , LANES >
rsters ( ex , ey , ez , 1000 , 500 ,
-M_PI , M_PI , -M_PI_2 , M_PI_2 ) ;
zimt::process ( a3.shape , rsters ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a3 ) ) ;
zimt::process ( b3.shape , ls , ster_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b3 ) ) ;
for ( std::size_t y = 0 ; y < a3.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a3.shape[0] ; x++ )
{
auto d = abs ( a3 [ { x , y } ] - b3 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
// for cubemap projection, we use differently-shaped
// arrays - using a shpe which would be natural for a
// 'standard' 1:6 vertically-stacked cubemap. Apart from
// parameterization, the process is the same as for the
// other projections.
zimt::array_t < 2 , d3_t > a6 ( { 500 , 3000 } ) ;
zimt::array_t < 2 , d3_t > b6 ( { 500 , 3000 } ) ;
cubemap_stepper < double , LANES >
cbms ( { 1.0 , 0.0 , 0.0 } ,
{ 0.0 , 1.0 , 0.0 } ,
{ 0.0 , 0.0 , 1.0 } ,
500 , 3000 ,
-1.0 , 1.0 , -6.0 , 6.0 ) ;
zimt::process ( a6.shape , cbms ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a6 ) ) ;
ir_to_ray_t < double , LANES > ir_to_ray ;
x0 = ( a6.shape[0] - 1 ) / -2.0 ;
y0 = ( a6.shape[1] - 1 ) / -2.0 ;
dx = 2.0 / a6.shape[0] ;
dy = 12.0 / a6.shape[1] ;
x0 *= dx ;
y0 *= dy ;
zimt::linspace_t < double , 2 , 2 , LANES >
ls2 ( { x0 , y0 } , { dx , dy } ) ;
zimt::process ( b6.shape , ls2 ,
ir_to_ray ,
zimt::storer < double , 3 , 2 , LANES > ( b6 ) ) ;
auto to_md2 = [&] ( std::size_t sx , std::size_t sy )
{
zimt::xel_t < double , 2 > crd2 ;
double & x ( crd2[0] ) ;
double & y ( crd2[1] ) ;
x = sx - ( a6.shape[0] - 1 ) / 2.0 ;
y = sy - ( a6.shape[1] - 1 ) / 2.0 ;
x *= 2.0 / a6.shape[0] ;
y *= 12.0 / a6.shape[1] ;
return crd2 ;
} ;
for ( std::size_t y = 0 ; y < a6.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a6.shape[0] ; x++ )
{
auto crd2 = to_md2 ( x , y ) ;
zimt::xel_t < double , 3 > crd3 ;
ir_to_ray.eval ( crd2 , crd3 ) ;
auto d = abs ( crd3 - a6 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
d = abs ( crd3 - b6 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
cubemap_stepper < double , LANES >
rcbms ( ex , ey , ez , 500 , 3000 ,
-1.0 , 1.0 , -6.0 , 6.0 ) ;
zimt::process ( a6.shape , rcbms ,
zimt::pass_through < double , 3 , LANES > () ,
zimt::storer < double , 3 , 2 , LANES > ( a6 ) ) ;
zimt::process ( b6.shape , ls2 , ir_to_ray + r3 ,
zimt::storer < double , 3 , 2 , LANES > ( b6 ) ) ;
for ( std::size_t y = 0 ; y < a6.shape[1] ; y++ )
{
for ( std::size_t x = 0 ; x < a6.shape[0] ; x++ )
{
auto d = abs ( a6 [ { x , y } ] - b6 [ { x , y } ] ) . sum() ;
assert ( d < .0000000000001 ) ;
}
}
// if none of the assertions failed and the program terminates
// now, all is well and the functors work as expected.
return 0 ;
}
struct dispatch
: public dispatch_base
{
// We fit the derived dispatch class with a c'tor which fills in
// information about the nested SIMD ISA we're currently in.
dispatch()
{
backend = int ( zimt::simdized_type<int,4>::backend ) ;
#if defined USE_HWY || defined MULTI_SIMD_ISA
hwy_isa = HWY_TARGET ;
#endif
}
// 'payload', the SIMD-ISA-specific overload of dispatch_base's
// pure virtual member function, now has the code which was in
// main() when this example was first coded without dispatch.
// One might be more tight-fisted with which part of the former
// 'main' should go here and which part should remain in the
// new 'main', but the little extra code which wouldn't benefit
// from vectorization doesn't make much of a difference here.
// Larger projects would have both several payload-type functions
// and a body of code which is independent of vectorization.
///////////////// write a payload function with a 'main' signature
int payload ( int argc , char * argv[] ) const
{
// we can get information about the specific dispatch object:
std::cout << "payload code is using back-end: "
<< zimt::backend_name [ backend ] << std::endl ;
#if defined USE_HWY || defined MULTI_SIMD_ISA
std::cout << "highway target: "
<< hwy::TargetName ( hwy_isa ) << std::endl ;
#endif
_payload ( argc , argv ) ;
return 0 ;
}
} ;
// we provide a free function _get_dispatch which provides a
// dispatch_base pointer pointing to an object of the derived class
// we have in this nested namespace (project::HWY_NAMESPACE)
// This will be called from the main program and the result can
// be used to call the ISA-specific payload code.
const dispatch_base * const _get_dispatch()
{
static dispatch d ;
return &d ;
}
END_ZIMT_SIMD_NAMESPACE
HWY_AFTER_NAMESPACE() ;
// TODO: really, there should be a sentinel #endif here, but the compiler
// tells me it's wrong
// #endif // sentinel