-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathpredict.py
76 lines (65 loc) · 2.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import argparse
import json
import torch
import torchvision.transforms as transforms
from torchvision.utils import save_image
import numpy as np
from PIL import Image
from models import CompletionNetwork
from utils import poisson_blend, gen_input_mask
parser = argparse.ArgumentParser()
parser.add_argument('model')
parser.add_argument('config')
parser.add_argument('input_img')
parser.add_argument('output_img')
parser.add_argument('--max_holes', type=int, default=5)
parser.add_argument('--img_size', type=int, default=160)
parser.add_argument('--hole_min_w', type=int, default=24)
parser.add_argument('--hole_max_w', type=int, default=48)
parser.add_argument('--hole_min_h', type=int, default=24)
parser.add_argument('--hole_max_h', type=int, default=48)
def main(args):
args.model = os.path.expanduser(args.model)
args.config = os.path.expanduser(args.config)
args.input_img = os.path.expanduser(args.input_img)
args.output_img = os.path.expanduser(args.output_img)
# =============================================
# Load model
# =============================================
with open(args.config, 'r') as f:
config = json.load(f)
mpv = torch.tensor(config['mpv']).view(1, 3, 1, 1)
model = CompletionNetwork()
model.load_state_dict(torch.load(args.model, map_location='cpu'))
# =============================================
# Predict
# =============================================
# convert img to tensor
img = Image.open(args.input_img)
img = transforms.Resize(args.img_size)(img)
img = transforms.RandomCrop((args.img_size, args.img_size))(img)
x = transforms.ToTensor()(img)
x = torch.unsqueeze(x, dim=0)
# create mask
mask = gen_input_mask(
shape=(1, 1, x.shape[2], x.shape[3]),
hole_size=(
(args.hole_min_w, args.hole_max_w),
(args.hole_min_h, args.hole_max_h),
),
max_holes=args.max_holes,
)
# inpaint
model.eval()
with torch.no_grad():
x_mask = x - x * mask + mpv * mask
input = torch.cat((x_mask, mask), dim=1)
output = model(input)
inpainted = poisson_blend(x_mask, output, mask)
imgs = torch.cat((x, x_mask, inpainted), dim=0)
save_image(imgs, args.output_img, nrow=3)
print('output img was saved as %s.' % args.output_img)
if __name__ == '__main__':
args = parser.parse_args()
main(args)