-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcar_on_racecourse_opty.py
423 lines (337 loc) · 12.4 KB
/
car_on_racecourse_opty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# %%
"""
Car on a Race Course
====================
A car with rear wheel drive and fron steering must go from start of finish on
a racecourse in minimal time.
The street is modelled as two function :math:`y = f(x)` and :math:`y = g(x)` ,
with :math:`f(x) > g(x), \\forall{x}`.
The car is modelled as three rods, one for the body, one for the rear axle and
one for the front axle.
To ensure the car stays on the road, I look at *number* points
:math:`P_i(x_i | y_i)`
distributed evenly along the body of the car and force
:math:`f(x_i) > y_i > g(x_i)` by introducing additional state variables
:math:`py_{upper}` and :math:`py_{lower}` and constraints
:math:`f(x_i) - py_{upper_i} > 0` and :math:`py_{lower_i} - g(x_i) > 0`.
Also I limit the acceleration at the front and at the rear end of the car to
avoid sliding off the road.
The is no speed allowed perpendicular to the wheels, realized by two speed
constraints.
**States**
- :math:`x, y` : coordinates of fron of the car
- :math:`u_x, u_y` : velocity of the front of the car
- :math:`q_0` : angle of the body of the car
- :math:`u_0` : angular velocity of the body of the car
- :math:`q_f` : angle of the front axis relative to the body
- :math:`u_f` : angular velocity of the front axis relative to the body
- :math:`py_{upper_i}` : distance of point i of the car to :math:`f(x_i)`
- :math:`py_{lower_i}` : distance of point i of the car to :math:`g(x_i)`
- :math:`acc_f` : acceleration of the front of the car
- :math:`acc_b` : acceleration of the back of the car
**Specifieds**
- :math:`T_f` : torque at the front axis, that is steering torque
- :math:`F_b` : force at the rear axis, that is driving force
**Known Parameters**
- :math:`l` : length of the car
- :math:`m_0` : mass of the body of the car
- :math:`m_b` : mass of the rear axis
- :math:`m_f` : mass of the front axis
- :math:`iZZ_0` : moment of inertia of the body of the car
- :math:`iZZ_b` : moment of inertia of the rear axis
- :math:`iZZ_f` : moment of inertia of the front axis
- :math:`reibung` : friction coefficient between the car and the street
- :math:`a, b, c, d` : parameters of the street
**Unknown Parameters**
- :math:`h` : time step
"""
import sympy.physics.mechanics as me
import numpy as np
import sympy as sm
from scipy.interpolate import CubicSpline
from opty.direct_collocation import Problem
from opty.utils import parse_free
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import matplotlib
from IPython.display import HTML
matplotlib.rcParams['animation.embed_limit'] = 2**128
from matplotlib.animation import FuncAnimation
# %%
# Kane's Equations of Motion
# --------------------------
# %%
N, A0, Ab, Af = sm.symbols('N A0 Ab Af', cls= me.ReferenceFrame)
t = me.dynamicsymbols._t
O, Pb, Dmc, Pf = sm.symbols('O Pb Dmc Pf', cls= me.Point)
O.set_vel(N, 0)
q0, qf = me.dynamicsymbols('q_0 q_f')
u0, uf = me.dynamicsymbols('u_0 u_f')
x, y = me.dynamicsymbols('x y')
ux, uy = me.dynamicsymbols('u_x u_y')
Tf, Fb = me.dynamicsymbols('T_f F_b')
reibung = sm.symbols('reibung')
l, m0, mb, mf, iZZ0, iZZb, iZZf = sm.symbols('l m0 mb mf iZZ0, iZZb, iZZf')
A0.orient_axis(N, q0, N.z)
A0.set_ang_vel(N, u0 * N.z)
Ab.orient_axis(A0, 0, N.z)
Af.orient_axis(A0, qf, N.z)
rot = Af.ang_vel_in(N)
Af.set_ang_vel(N, uf * N.z)
rot1 = Af.ang_vel_in(N)
Pf.set_pos(O, x * N.x + y * N.y)
Pf.set_vel(N, ux * N.x + uy * N.y)
Pb.set_pos(Pf, -l * A0.y)
Pb.v2pt_theory(Pf, N, A0)
Dmc.set_pos(Pf, -l/2 * A0.y)
Dmc.v2pt_theory(Pf, N, A0)
prevent_print = 1
# %%
# No speed perpendicular to the wheels.
vel1 = me.dot(Pb.vel(N), Ab.x) - 0
vel2 = me.dot(Pf.vel(N), Af.x) - 0
# %%
# The equations of motion.
I0 = me.inertia(A0, 0, 0, iZZ0)
body0 = me.RigidBody('body0', Dmc, A0, m0, (I0, Dmc))
Ib = me.inertia(Ab, 0, 0, iZZb)
bodyb = me.RigidBody('bodyb', Pb, Ab, mb, (Ib, Pb))
If = me.inertia(Af, 0, 0, iZZf)
bodyf = me.RigidBody('bodyf', Pf, Af, mf, (If, Pf))
BODY = [body0, bodyb, bodyf]
FL = [(Pb, Fb * Ab.y), (Af, Tf * N.z), (Dmc, -reibung * Dmc.vel(N))]
kd = sm.Matrix([ux - x.diff(t), uy - y.diff(t), u0 - q0.diff(t),
me.dot(rot1- rot, N.z)])
speed_constr = sm.Matrix([vel1, vel2])
q_ind = [x, y, q0, qf]
u_ind = [u0, uf]
u_dep = [ux, uy]
KM = me.KanesMethod(
N, q_ind=q_ind, u_ind=u_ind,
kd_eqs=kd,
u_dependent=u_dep,
velocity_constraints=speed_constr,
)
(fr, frstar) = KM.kanes_equations(BODY, FL)
eom = fr + frstar
eom = kd.col_join(eom)
eom = eom.col_join(speed_constr)
# %%
# Constraints so the car 'respects' the road.
#
# %%
XX, a, b, c, d = sm.symbols('XX a b c d')
def street(XX, a, b, c):
return a*sm.sin(b*XX) + c
number = 4
py_upper = me.dynamicsymbols(f'py_upper:{number}')
py_lower = me.dynamicsymbols(f'py_lower:{number}')
acc_f, acc_b = me.dynamicsymbols('acc_f acc_b')
park1y = Pf.pos_from(O).dot(N.y)
park2y = Pb.pos_from(O).dot(N.y)
park1x = Pf.pos_from(O).dot(N.x)
park2x = Pb.pos_from(O).dot(N.x)
delta_x = np.linspace(park1x, park2x, number)
delta_y = np.linspace(park1y, park2y, number)
delta_p_u = [delta_y[i] - street(delta_x[i], a, b, c) for i in range(number)]
delta_p_l = [-delta_y[i] + street(delta_x[i], a, b, c+d) for i in range(number)]
eom_add = sm.Matrix([
*[-py_upper[i] + delta_p_u[i] for i in range(number)],
*[-py_lower[i] + delta_p_l[i] for i in range(number)],
])
eom = eom.col_join(eom_add)
# %%
# Acceleration constraints, so the car does not slide off the road.
accel_front = Pf.acc(N).magnitude()
accel_back = Pb.acc(N).magnitude()
beschleunigung = sm.Matrix([-acc_f + accel_front, -acc_b + accel_back])
eom = eom.col_join(beschleunigung)
print(f'eom too large to print out. Its shape is {eom.shape} and it has ' +
f'{sm.count_ops(eom)} operations')
# %%
# Set up the Optimization Problem and Solve it
# --------------------------------------------
h = sm.symbols('h')
state_symbols = ([x, y, q0, qf, ux, uy, u0, uf] + py_upper + py_lower
+ [acc_f, acc_b])
#laenge = len(state_symbols)
constant_symbols = (l, m0, mb, mf, iZZ0, iZZb, iZZf, reibung, a, b, c, d)
specified_symbols = (Fb, Tf)
unknown_symbols = ()
num_nodes = 301
t0 = 0.0
interval_value = h
tf = h * (num_nodes - 1)
# %%
# Specify the known system parameters.
par_map = {}
par_map[m0] = 1.0
par_map[mb] = 0.5
par_map[mf] = 0.5
par_map[iZZ0] = 1.
par_map[iZZb] = 0.5
par_map[iZZf] = 0.5
par_map[l] = 3.0
par_map[reibung] = 0.5
# below for the shape of the street
par_map[a] = 3.5
par_map[b] = 0.5
par_map[c] = 4.0
par_map[d] = 3.5
# %%
# Define the objective function and its gradient.
def obj(free):
return free[-1]
def obj_grad(free):
grad = np.zeros_like(free)
grad[-1] = 1.0
return grad
# %%
# Set up the constraints and the bounds.
instance_constraints = (
x.func(t0) + 10.0,
ux.func(t0),
uy.func(t0),
u0.func(t0),
uf.func(t0),
x.func(tf) - 10.0,
ux.func(tf),
uy.func(tf),
)
grenze = 20.0
grenze1 = 5.0
delta = np.pi/4.0
bounds1 = {
Fb: (-grenze, grenze),
Tf: (-grenze, grenze),
# restrict the steering angle to avoid locking
qf: (-np.pi/2. + delta, np.pi/2. - delta),
x: (-15, 15),
y: (0.0, 25),
h: (0.0, 0.5),
acc_f: (-grenze1, grenze1),
acc_b: (-grenze1, grenze1),
}
bounds2 = {py_upper[i]: (0, 10.0) for i in range(number)}
bounds3 = {py_lower[i]: (0.0, 10.0) for i in range(number)}
bounds = {**bounds1, **bounds2, **bounds3}
prob = Problem(
obj,
obj_grad,
eom,
state_symbols,
num_nodes,
interval_value,
known_parameter_map=par_map,
instance_constraints=instance_constraints,
bounds=bounds,
)
# %%
# For the initial guess I use the result of some previous run, to expedite
# execution.
initial_guess = np.ones(prob.num_free)
initial_guess = np.load('car_on_racecourse_solution.npy')
prob.add_option('max_iter', 1000)
for i in range(1):
# Find the optimal solution.
solution, info = prob.solve(initial_guess)
initial_guess = solution
print(f'{i+1} - th iteration')
print('message from optimizer:', info['status_msg'])
print('Iterations needed',len(prob.obj_value))
print(f"objective value {info['obj_val']:.3e} \n")
#np.save('car_on_racecourse_solution.npy', solution)
prob.plot_objective_value()
# %%
# Plot the constraint violations.
# %%
prob.plot_constraint_violations(solution)
# %%
# Plot generalized coordinates / speeds and forces / torques
prob.plot_trajectories(solution)
# %%
# Aminate the Car
# ---------------
fps = 10
street_lam = sm.lambdify((x, a, b, c), street(x, a, b, c))
tf = solution[-1] * (num_nodes - 1)
def add_point_to_data(line, x, y):
# to trace the path of the point. Copied from Timo.
old_x, old_y = line.get_data()
line.set_data(np.append(old_x, x), np.append(old_y, y))
state_vals, input_vals, _ = parse_free(solution, len(state_symbols),
len(specified_symbols), num_nodes)
t_arr = np.linspace(t0, tf, num_nodes)
state_sol = CubicSpline(t_arr, state_vals.T)
input_sol = CubicSpline(t_arr, input_vals.T)
# create additional points for the axles
Pbl, Pbr, Pfl, Pfr = sm.symbols('Pbl Pbr Pfl Pfr', cls= me.Point)
# end points of the force, length of the axles
Fbq = me.Point('Fbq')
la = sm.symbols('la')
fb, tq = sm.symbols('f_b, t_q')
Pbl.set_pos(Pb, -la/2 * Ab.x)
Pbr.set_pos(Pb, la/2 * Ab.x)
Pfl.set_pos(Pf, -la/2 * Af.x)
Pfr.set_pos(Pf, la/2 * Af.x)
Fbq.set_pos(Pb, fb * Ab.y)
coordinates = Pb.pos_from(O).to_matrix(N)
for point in (Dmc, Pf, Pbl, Pbr, Pfl, Pfr, Fbq):
coordinates = coordinates.row_join(point.pos_from(O).to_matrix(N))
pL, pL_vals = zip(*par_map.items())
la1 = par_map[l] / 4. # length of an axle
la2 = la1/1.8
coords_lam = sm.lambdify((*state_symbols, fb, tq, *pL, la), coordinates,
cse=True)
def init():
xmin, xmax = -13, 13.
ymin, ymax = -0.75, 12.5
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111)
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_aspect('equal')
ax.grid()
XX = np.linspace(xmin, xmax, 200)
ax.fill_between(XX, ymin, street_lam(XX, par_map[a], par_map[b],
par_map[c]-la2), color='grey', alpha=0.25)
ax.fill_between(XX, street_lam(XX, par_map[a], par_map[b],
par_map[c]+par_map[d]+la2), ymax, color='grey', alpha=0.25)
ax.plot(XX, street_lam(XX, par_map[a], par_map[b], par_map[c]-la2),
color='black')
ax.plot(XX, street_lam(XX, par_map[a],
par_map[b], par_map[c]+par_map[d]+la2), color='black')
ax.vlines(-10.0, street_lam(-10.0, par_map[a], par_map[b],
par_map[c]-la2), street_lam(-10, par_map[a], par_map[b],
par_map[c]+par_map[d]+la2), color='red', linestyle='--')
ax.vlines(10.0, street_lam(10, par_map[a], par_map[b], par_map[c]-la2),
street_lam(10, par_map[a], par_map[b], par_map[c]+par_map[d]
+la2), color='green', linestyle='--')
line1, = ax.plot([], [], color='orange', lw=2)
line2, = ax.plot([], [], color='red', lw=2)
line3, = ax.plot([], [], color='magenta', lw=2)
line4 = ax.quiver([], [], [], [], color='green', scale=35, width=0.004,
headwidth=8)
return fig, ax, line1, line2, line3, line4
# Function to update the plot for each animation frame
fig, ax, line1, line2, line3, line4 = init()
def update(t):
message = (f'running time {t:.2f} sec \n The rear axle is red, the ' +
f'front axle is magenta \n The driving/breaking force is green')
ax.set_title(message, fontsize=12)
coords = coords_lam(*state_sol(t), *input_sol(t), *pL_vals, la1)
# Pb, Dmc, Pf, Pbl, Pbr, Pfl, Pfr, Fbq
line1.set_data([coords[0, 0], coords[0, 2]], [coords[1, 0], coords[1, 2]])
line2.set_data([coords[0, 3], coords[0, 4]], [coords[1, 3], coords[1, 4]])
line3.set_data([coords[0, 5], coords[0, 6]], [coords[1, 5], coords[1, 6]])
line4.set_offsets([coords[0, 0], coords[1, 0]])
line4.set_UVC(coords[0, 7] - coords[0, 0] , coords[1, 7] - coords[1, 0])
frames = np.linspace(t0, tf, int(fps * (tf - t0)))
animation = FuncAnimation(fig, update, frames=frames, interval=1000/fps)
plt.close(fig) # Prevents the final image from being displayed directly below the animation
display(HTML(animation.to_jshtml()))
# %%
# sphinx_gallery_thumbnail_number = 5
fig, ax, line1, line2, line3, line4 = init()
update(4.7)
plt.show()