-
-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathsiamese_network.py
317 lines (254 loc) · 12.1 KB
/
siamese_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
from ignite.handlers.param_scheduler import LRScheduler
from ignite.metrics import Accuracy, RunningAverage
from ignite.utils import manual_seed
class SiameseNetwork(nn.Module):
# update Siamese Network implementation in accordance with the dataset
"""
Siamese network for image similarity estimation.
The network is composed of two identical networks, one for each input.
The output of each network is concatenated and passed to a linear layer.
The output of the linear layer passed through a sigmoid function.
`"FaceNet" <https://arxiv.org/pdf/1503.03832.pdf>`_ is a variant of the Siamese network.
This implementation varies from FaceNet as we use the `ResNet-18` model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`
as our feature extractor.
In addition we use CIFAR10 dataset along with TripletMarginLoss
"""
def __init__(self):
super(SiameseNetwork, self).__init__()
# get resnet model
self.resnet = torchvision.models.resnet34(weights=None)
fc_in_features = self.resnet.fc.in_features
# changing the FC layer of resnet model to a linear layer
self.resnet.fc = nn.Identity()
# add linear layers to compare between the features of the two images
self.fc = nn.Sequential(
nn.Linear(fc_in_features, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 10),
nn.ReLU(inplace=True),
)
# initialise relu activation
self.relu = nn.ReLU()
# initialize the weights
self.resnet.apply(self.init_weights)
self.fc.apply(self.init_weights)
def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def forward_once(self, x):
output = self.resnet(x)
output = output.view(output.size()[0], -1)
return output
def forward(self, input1, input2, input3):
# pass the input through resnet
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
output3 = self.forward_once(input3)
# pass the output of resnet to sigmoid layer
output1 = self.fc(output1)
output2 = self.fc(output2)
output3 = self.fc(output3)
return output1, output2, output3
class MatcherDataset(Dataset):
# following class implements data downloading and handles preprocessing
def __init__(self, root, train, download=False):
super(MatcherDataset, self).__init__()
# get CIFAR10 dataset
self.dataset = datasets.CIFAR10(root, train=train, download=download)
# convert data from numpy array to Tensor
self.data = torch.from_numpy(self.dataset.data)
# shift the dimensions of dataset to match the initial input layer dimensions
self.data = torch.movedim(self.data, (0, 1, 2, 3), (0, 2, 3, 1))
# convert targets list to torch Tensor
self.dataset.targets = torch.tensor(self.dataset.targets)
self.group_examples()
def group_examples(self):
"""
To ease the accessibility of data based on the class, we will use `group_examples` to group
examples based on class. The data classes have already been mapped to numeric values and
so are the target outputs for each training input
Every key in `grouped_examples` corresponds to a class in CIFAR10 dataset. For every key in
`grouped_examples`, every value will conform to all of the indices for the CIFAR10
dataset examples that correspond to that key.
"""
# get the targets from CIFAR10 dataset
np_arr = np.array(self.dataset.targets)
# group examples based on class
self.grouped_examples = {}
for i in range(0, 10):
self.grouped_examples[i] = np.where((np_arr == i))[0]
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
"""
For every sample in the batch we select 3 images. First one is the anchor image
which is the image obtained from the current index. We also obtain the label of
anchor image.
Now we select two random images, one belonging to the same class as that of the
anchor image (named as positive_image) and the other belonging to a different class
than that of the anchor image (named as negative_image). We return the anchor image,
positive image, negative image and anchor label.
"""
# obtain the anchor image
anchor_image = self.data[index].float()
# obtain the class label of the anchor image
anchor_label = self.dataset.targets[index]
anchor_label = int(anchor_label.item())
# find a label which is different from anchor_label
labels = list(range(0, 10))
labels.remove(anchor_label)
neg_index = torch.randint(0, 9, (1,)).item()
neg_label = labels[neg_index]
# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[anchor_label]), (1,)).item()
# get the index of image in actual data using the anchor label and random index
positive_index = self.grouped_examples[anchor_label][random_index]
# choosing a random image using positive_index
positive_image = self.data[positive_index].float()
# get a random index from the range range of indices
random_index = torch.randint(0, len(self.grouped_examples[neg_label]), (1,)).item()
# get the index of image in actual data using the negative label and random index
negative_index = self.grouped_examples[neg_label][random_index]
# choosing a random image using negative_index
negative_image = self.data[negative_index].float()
return anchor_image, positive_image, negative_image, anchor_label
def pairwise_distance(input1, input2):
dist = input1 - input2
dist = torch.pow(dist, 2)
return dist
def calculate_loss(input1, input2):
output = pairwise_distance(input1, input2)
loss = torch.sum(output, 1)
loss = torch.sqrt(loss)
return loss
def run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler):
# using Triplet Margin Loss
criterion = nn.TripletMarginLoss(p=2, margin=2.8)
# define model training step
def train_step(engine, batch):
model.train()
anchor_image, positive_image, negative_image, anchor_label = batch
anchor_image = anchor_image.to(device)
positive_image, negative_image = positive_image.to(device), negative_image.to(device)
anchor_label = anchor_label.to(device)
optimizer.zero_grad()
anchor_out, positive_out, negative_out = model(anchor_image, positive_image, negative_image)
loss = criterion(anchor_out, positive_out, negative_out)
loss.backward()
optimizer.step()
return loss
# define model testing step
def test_step(engine, batch):
model.eval()
with torch.no_grad():
anchor_image, _, _, anchor_label = batch
anchor_image = anchor_image.to(device)
anchor_label = anchor_label.to(device)
other_image = []
other_label = []
y_true = []
for i in range(anchor_image.shape[0]):
index = torch.randint(0, anchor_image.shape[0], (1,)).item()
img = anchor_image[index]
label = anchor_label[index]
other_image.append(img)
other_label.append(label)
if anchor_label[i] == other_label[i]:
y_true.append(1)
else:
y_true.append(0)
other = torch.stack(other_image)
other_label = torch.tensor(other_label)
other, other_label = other.to(device), other_label.to(device)
anchor_out, other_out, _ = model(anchor_image, other, other)
test_loss = calculate_loss(anchor_out, other_out)
y_pred = torch.where(test_loss < 3, 1, 0)
y_true = torch.tensor(y_true)
return [y_pred, y_true]
# create engines for trainer and evaluator
trainer = Engine(train_step)
evaluator = Engine(test_step)
# attach Running Average Loss metric to trainer and evaluator engines
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
Accuracy(output_transform=lambda x: x).attach(evaluator, "accuracy")
# attach progress bar to trainer with loss
pbar1 = ProgressBar()
pbar1.attach(trainer, metric_names=["loss"])
# attach progress bar to evaluator
pbar2 = ProgressBar()
pbar2.attach(evaluator)
# attach LR Scheduler to trainer engine
trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)
# event handler triggers evauator at end of every epoch
@trainer.on(Events.EPOCH_COMPLETED(every=args.log_interval))
def test(engine):
state = evaluator.run(test_loader)
print(f'Test Accuracy: {state.metrics["accuracy"]}')
# run the trainer
trainer.run(train_loader, max_epochs=args.epochs)
def main():
# adds training defaults and support for terminal arguments
parser = argparse.ArgumentParser(description="PyTorch Siamese network Example")
parser.add_argument(
"--batch-size", type=int, default=256, metavar="N", help="input batch size for training (default: 256)"
)
parser.add_argument(
"--test-batch-size", type=int, default=256, metavar="N", help="input batch size for testing (default: 256)"
)
parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument(
"--gamma", type=float, default=0.95, metavar="M", help="Learning rate step gamma (default: 0.95)"
)
parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training")
parser.add_argument("--no-mps", action="store_true", default=False, help="disables macOS GPU training")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=1,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="saves model parameters")
parser.add_argument("--num-workers", type=int, default=4, help="number of parallel batches (default: 4)")
args = parser.parse_args()
# set manual seed
manual_seed(args.seed)
# set device
use_cuda = not args.no_cuda and torch.cuda.is_available()
use_mps = not args.no_mps and torch.backends.mps.is_available()
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
# data loading
train_dataset = MatcherDataset("../data", train=True, download=True)
test_dataset = MatcherDataset("../data", train=False)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, num_workers=args.num_workers)
# set model parameters
model = SiameseNetwork().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=15, gamma=args.gamma)
lr_scheduler = LRScheduler(scheduler)
# call run function
run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler)
if __name__ == "__main__":
main()