-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathtest.py
208 lines (181 loc) · 8.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
import json
import torch
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data
from networks.ccnet import Res_Deeplab
from dataset.datasets import CSDataTestSet
from collections import OrderedDict
import os
import scipy.ndimage as nd
from math import ceil
from PIL import Image as PILImage
import torch.nn as nn
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
DATA_DIRECTORY = 'cityscapes'
DATA_LIST_PATH = './dataset/list/cityscapes/test.lst'
IGNORE_LABEL = 255
NUM_CLASSES = 19
INPUT_SIZE = '769,769'
RESTORE_FROM = './deeplab_resnet.ckpt'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLabLFOV Network")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--gpu", type=str, default='0',
help="choose gpu device.")
parser.add_argument("--recurrence", type=int, default=1,
help="choose the number of recurrence.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--whole", type=bool, default=False,
help="use whole input size.")
return parser.parse_args()
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def pad_image(img, target_size):
"""Pad an image up to the target size."""
rows_missing = target_size[0] - img.shape[2]
cols_missing = target_size[1] - img.shape[3]
padded_img = np.pad(img, ((0, 0), (0, 0), (0, rows_missing), (0, cols_missing)), 'constant')
return padded_img
def predict_sliding(net, image, tile_size, classes, flip_evaluation, recurrence):
interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
image_size = image.shape
overlap = 1/3
stride = ceil(tile_size[0] * (1 - overlap))
tile_rows = int(ceil((image_size[2] - tile_size[0]) / stride) + 1) # strided convolution formula
tile_cols = int(ceil((image_size[3] - tile_size[1]) / stride) + 1)
print("Need %i x %i prediction tiles @ stride %i px" % (tile_cols, tile_rows, stride))
full_probs = np.zeros((image_size[2], image_size[3], classes))
count_predictions = np.zeros((image_size[2], image_size[3], classes))
tile_counter = 0
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride)
y1 = int(row * stride)
x2 = min(x1 + tile_size[1], image_size[3])
y2 = min(y1 + tile_size[0], image_size[2])
x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes
y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows
img = image[:, :, y1:y2, x1:x2]
padded_img = pad_image(img, tile_size)
# plt.imshow(padded_img)
# plt.show()
tile_counter += 1
print("Predicting tile %i" % tile_counter)
padded_prediction = net(Variable(torch.from_numpy(padded_img), volatile=True).cuda(), recurrence)
if isinstance(padded_prediction, list):
padded_prediction = padded_prediction[0]
padded_prediction = interp(padded_prediction).cpu().data[0].numpy().transpose(1,2,0)
prediction = padded_prediction[0:img.shape[2], 0:img.shape[3], :]
count_predictions[y1:y2, x1:x2] += 1
full_probs[y1:y2, x1:x2] += prediction # accumulate the predictions also in the overlapping regions
# average the predictions in the overlapping regions
full_probs /= count_predictions
# visualize normalization Weights
# plt.imshow(np.mean(count_predictions, axis=2))
# plt.show()
return full_probs
def predict_whole(net, image, tile_size, flip_evaluation, recurrence):
interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
prediction = net(image.cuda(), recurrence)
if isinstance(prediction, list):
prediction = prediction[0]
prediction = interp(prediction).cpu().data[0].numpy().transpose(1,2,0)
return prediction
def id2trainId(label, id_to_trainid, reverse=False):
label_copy = label.copy()
if reverse:
for v, k in id_to_trainid.items():
label_copy[label == k] = v
else:
for k, v in id_to_trainid.items():
label_copy[label == k] = v
return label_copy
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
# gpu0 = args.gpu
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
h, w = map(int, args.input_size.split(','))
if args.whole:
input_size = (1024, 2048)
else:
input_size = (h, w)
ignore_label= args.ignore_label
model = Res_Deeplab(num_classes=args.num_classes)
saved_state_dict = torch.load(args.restore_from)
model.load_state_dict(saved_state_dict)
model.eval()
model.cuda()
testloader = data.DataLoader(CSDataTestSet(args.data_dir, args.data_list, crop_size=(1024, 2048), mean=IMG_MEAN),
batch_size=1, shuffle=False, pin_memory=True)
data_list = []
confusion_matrix = np.zeros((args.num_classes,args.num_classes))
palette = get_palette(256)
id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label,
3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label,
7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4,
14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5,
18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14,
28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18}
interp = nn.Upsample(size=(1024, 2048), mode='bilinear', align_corners=True)
if not os.path.exists('outputs'):
os.makedirs('outputs')
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
image, size, name = batch
size = size[0].numpy()
with torch.no_grad():
if args.whole:
output = predict_whole(model, image, input_size, True, args.recurrence)
else:
output = predict_sliding(model, image.numpy(), input_size, args.num_classes, True, args.recurrence)
seg_pred = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)
seg_pred = id2trainId(seg_pred, id_to_trainid, reverse=True)
output_im = PILImage.fromarray(seg_pred)
output_im.putpalette(palette)
output_im.save('outputs/'+name[0]+'.png')
if __name__ == '__main__':
main()