Skip to content

Official implementation for "SimpleTM: A Simple Baseline For Multivariate Time Series Forcasting" (ICLR 2025)

Notifications You must be signed in to change notification settings

vsingh-group/SimpleTM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimpleTM

The repo is the official implementation for the paper: [ICLR '25] SimpleTM: A Simple Baseline For Multivariate Time Series Forcasting.

Introduction

We propose SimpleTM, a simple yet effective architecture that uniquely integrates classical signal processing ideas with a slightly modified attention mechanism.

We show that even a single-layer configuration can effectively capture intricate dependencies in multivariate time-series data, while maintaining minimal model complexity and parameter requirements. This streamlined construction achieves a performance profile surpassing (or on par with) most existing baselines across nearly all publicly available benchmarks.

Table 6: Complete results of the long-term forecasting task, with an input length of 96 for all tasks. The reported metrics include the averaged Mean Squared Error (MSE) and Mean Absolute Error (MAE) across four prediction horizons, where lower values indicate better model performance.
Dataset Horizon SimpleTM (Ours) TimeMixer (2024) iTransformer (2024) CrossGNN (2024) RLinear (2023) PatchTST (2023) Crossformer (2023) TiDE (2023) TimesNet (2023) DLinear (2023) SCINet (2022) FEDformer (2022) Stationary (2022) Autoformer (2021)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 96 0.321 0.361 0.328 0.363 0.334 0.368 0.335 0.373 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.360 0.380 0.364 0.384 0.377 0.391 0.372 0.390 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.390 0.404 0.390 0.404 0.426 0.420 0.403 0.411 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.454 0.438 0.458 0.445 0.491 0.459 0.461 0.442 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561
Avg 0.381 0.396 0.385 0.399 0.407 0.410 0.393 0.404 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517
ETTm2 96 0.173 0.257 0.176 0.259 0.180 0.264 0.176 0.266 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.238 0.299 0.242 0.303 0.250 0.309 0.240 0.307 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.296 0.338 0.304 0.342 0.311 0.348 0.304 0.345 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.393 0.395 0.393 0.397 0.412 0.407 0.406 0.400 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432
Avg 0.275 0.322 0.278 0.325 0.288 0.332 0.282 0.330 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371
ETTh1 96 0.366 0.392 0.381 0.401 0.386 0.405 0.382 0.398 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.422 0.421 0.440 0.433 0.441 0.436 0.427 0.425 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.440 0.438 0.501 0.462 0.487 0.458 0.465 0.445 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.463 0.462 0.501 0.482 0.503 0.491 0.472 0.468 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512
Avg 0.422 0.428 0.458 0.445 0.454 0.447 0.437 0.434 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487
ETTh2 96 0.281 0.338 0.292 0.343 0.297 0.349 0.309 0.359 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.355 0.387 0.374 0.395 0.380 0.400 0.390 0.406 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.365 0.401 0.428 0.433 0.428 0.432 0.426 0.444 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.413 0.436 0.454 0.458 0.427 0.445 0.445 0.444 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511
Avg 0.353 0.391 0.384 0.407 0.383 0.407 0.393 0.413 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459
ECL 96 0.141 0.235 0.153 0.244 0.148 0.240 0.173 0.275 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.151 0.247 0.166 0.256 0.162 0.253 0.195 0.288 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.173 0.267 0.184 0.275 0.178 0.269 0.206 0.300 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.201 0.293 0.226 0.313 0.225 0.317 0.231 0.335 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361
Avg 0.166 0.260 0.178 0.270 0.201 0.300 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338
Weather 96 0.162 0.207 0.165 0.212 0.174 0.214 0.159 0.218 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.208 0.248 0.209 0.253 0.221 0.254 0.211 0.266 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.263 0.290 0.264 0.293 0.278 0.296 0.267 0.310 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.340 0.341 0.342 0.345 0.358 0.347 0.352 0.362 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428
Avg 0.243 0.271 0.245 0.276 0.258 0.278 0.247 0.289 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382
Traffic 96 0.410 0.274 0.464 0.289 0.395 0.268 0.570 0.310 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.430 0.280 0.477 0.292 0.417 0.276 0.577 0.321 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.449 0.290 0.500 0.305 0.433 0.283 0.588 0.324 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.486 0.309 0.548 0.313 0.467 0.302 0.597 0.337 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408
Avg 0.444 0.289 0.497 0.300 0.428 0.282 0.583 0.323 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379
Solar-Energy 96 0.163 0.232 0.215 0.294 0.203 0.237 0.222 0.301 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711
192 0.182 0.247 0.237 0.275 0.233 0.261 0.246 0.307 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.193 0.257 0.252 0.298 0.248 0.273 0.263 0.324 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.199 0.252 0.244 0.293 0.249 0.275 0.265 0.318 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717
Avg 0.184 0.247 0.237 0.290 0.233 0.262 0.249 0.313 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

Get Started

1. Download the Data

All datasets have been preprocessed and are ready for use. You can obtain them from their original sources:

For convenience, we provide a comprehensive package containing all required datasets, available for download from Google Drive. You can place it under the folder ./dataset.

2. Setup Your Environment

Choose one of the following methods to set up your environment:

Option A: Anaconda

Create and activate a Python environment using the provided configuration file environment.yml:

conda env create -f environment.yml -n SimpleTM
conda activate SimpleTM

Option B: Docker

If you prefer Docker, build an image using the provided Dockerfile:

docker build --tag simpletm:latest .

3. Train the Model

Experiment scripts for various benchmarks are provided in the scripts directory. You can reproduce experiment results as follows:

bash ./scripts/multivariate_forecasting/ETT/SimpleTM_h1.sh       # ETTh1
bash ./scripts/multivariate_forecasting/ECL/SimpleTM.sh          # Electricity
bash ./scripts/long_term_forecast/SolarEnergy/SimpleTM.sh        # Solar-Energy
bash ./scripts/long_term_forecast/Weather/SimpleTM.sh            # Weather
bash ./scripts/short_term_forecast/PEMS/SimpleTM_03.sh           # PEMS03

Docker Users

If you're using Docker, run the scripts with the following command structure (example for ETTh1):

docker run --gpus all -it --rm --ipc=host \
    --user $(id -u):$(id -g) \
    -v "$(pwd)":/scratch --workdir /scratch -e HOME=/scratch \
    simpletm:latest \
    bash scripts/multivariate_forecasting/ETT/SimpleTM_h1.sh

Model Efficiency

To provide an efficiency comparison, we evaluated our model against two of the most competitive baselines: the transformer-based iTransformer and linear-based TimeMixer. Our experimental setup used a consistent batch size of 256 across all models and measured four key metrics: total trainable parameters, inference time, GPU memory footprint, and peak memory usage during the backward pass. Results for all baseline models were compiled using PyTorch.

Please note that our default experimental configuration does not employ compilation optimizations. To speed up, enable the --compile flag in the scripts.

Table 13: Comparison of model performance and resource utilization across different datasets. Metrics include Mean Squared Error (MSE), total parameter count, inference time (seconds), GPU memory footprint (MB), and peak memory usage (MB).
Dataset Model MSE Total Params Inference Time (s) GPU Mem Footprint (MB) Peak Mem (MB)
Weather SimpleTM 0.162 13,472 0.0132 994 181.75
TimeMixer 0.164 104,433 0.0453 2,954 2,281.38
iTransformer 0.176 4,833,888 0.0222 1,596 847.62
Solar SimpleTM 0.163 166,304 0.0455 2,048 1,181.56
TimeMixer 0.215 13,009,079 0.2644 7,576 6,632.40
iTransformer 0.203 3,255,904 0.0663 4,022 2,776.50

Acknowledgement

We appreciate the following GitHub repos a lot for their valuable code and efforts.

Citation

If you find this repo helpful, please cite our paper.

@inproceedings{
chen2025simpletm,
title={Simple{TM}: A Simple Baseline for Multivariate Time Series Forecasting},
author={Hui Chen and Viet Luong and Lopamudra Mukherjee and Vikas Singh},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=oANkBaVci5}
}

About

Official implementation for "SimpleTM: A Simple Baseline For Multivariate Time Series Forcasting" (ICLR 2025)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published