The repo is the official implementation for the paper: [ICLR '25] SimpleTM: A Simple Baseline For Multivariate Time Series Forcasting.
We propose SimpleTM, a simple yet effective architecture that uniquely integrates classical signal processing ideas with a slightly modified attention mechanism.
We show that even a single-layer configuration can effectively capture intricate dependencies in multivariate time-series data, while maintaining minimal model complexity and parameter requirements. This streamlined construction achieves a performance profile surpassing (or on par with) most existing baselines across nearly all publicly available benchmarks.
Dataset | Horizon | SimpleTM (Ours) | TimeMixer (2024) | iTransformer (2024) | CrossGNN (2024) | RLinear (2023) | PatchTST (2023) | Crossformer (2023) | TiDE (2023) | TimesNet (2023) | DLinear (2023) | SCINet (2022) | FEDformer (2022) | Stationary (2022) | Autoformer (2021) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTm1 | 96 | 0.321 | 0.361 | 0.328 | 0.363 | 0.334 | 0.368 | 0.335 | 0.373 | 0.355 | 0.376 | 0.329 | 0.367 | 0.404 | 0.426 | 0.364 | 0.387 | 0.338 | 0.375 | 0.345 | 0.372 | 0.418 | 0.438 | 0.379 | 0.419 | 0.386 | 0.398 | 0.505 | 0.475 |
192 | 0.360 | 0.380 | 0.364 | 0.384 | 0.377 | 0.391 | 0.372 | 0.390 | 0.391 | 0.392 | 0.367 | 0.385 | 0.450 | 0.451 | 0.398 | 0.404 | 0.374 | 0.387 | 0.380 | 0.389 | 0.439 | 0.450 | 0.426 | 0.441 | 0.459 | 0.444 | 0.553 | 0.496 | |
336 | 0.390 | 0.404 | 0.390 | 0.404 | 0.426 | 0.420 | 0.403 | 0.411 | 0.424 | 0.415 | 0.399 | 0.410 | 0.532 | 0.515 | 0.428 | 0.425 | 0.410 | 0.411 | 0.413 | 0.413 | 0.490 | 0.485 | 0.445 | 0.459 | 0.495 | 0.464 | 0.621 | 0.537 | |
720 | 0.454 | 0.438 | 0.458 | 0.445 | 0.491 | 0.459 | 0.461 | 0.442 | 0.487 | 0.450 | 0.454 | 0.439 | 0.666 | 0.589 | 0.487 | 0.461 | 0.478 | 0.450 | 0.474 | 0.453 | 0.595 | 0.550 | 0.543 | 0.490 | 0.585 | 0.516 | 0.671 | 0.561 | |
Avg | 0.381 | 0.396 | 0.385 | 0.399 | 0.407 | 0.410 | 0.393 | 0.404 | 0.414 | 0.407 | 0.387 | 0.400 | 0.513 | 0.496 | 0.419 | 0.419 | 0.400 | 0.406 | 0.403 | 0.407 | 0.485 | 0.481 | 0.448 | 0.452 | 0.481 | 0.456 | 0.588 | 0.517 | |
ETTm2 | 96 | 0.173 | 0.257 | 0.176 | 0.259 | 0.180 | 0.264 | 0.176 | 0.266 | 0.182 | 0.265 | 0.175 | 0.259 | 0.287 | 0.366 | 0.207 | 0.305 | 0.187 | 0.267 | 0.193 | 0.292 | 0.286 | 0.377 | 0.203 | 0.287 | 0.192 | 0.274 | 0.255 | 0.339 |
192 | 0.238 | 0.299 | 0.242 | 0.303 | 0.250 | 0.309 | 0.240 | 0.307 | 0.246 | 0.304 | 0.241 | 0.302 | 0.414 | 0.492 | 0.290 | 0.364 | 0.249 | 0.309 | 0.284 | 0.362 | 0.399 | 0.445 | 0.269 | 0.328 | 0.280 | 0.339 | 0.281 | 0.340 | |
336 | 0.296 | 0.338 | 0.304 | 0.342 | 0.311 | 0.348 | 0.304 | 0.345 | 0.307 | 0.342 | 0.305 | 0.343 | 0.597 | 0.542 | 0.377 | 0.422 | 0.321 | 0.351 | 0.369 | 0.427 | 0.637 | 0.591 | 0.325 | 0.366 | 0.334 | 0.361 | 0.339 | 0.372 | |
720 | 0.393 | 0.395 | 0.393 | 0.397 | 0.412 | 0.407 | 0.406 | 0.400 | 0.407 | 0.398 | 0.402 | 0.400 | 1.730 | 1.042 | 0.558 | 0.524 | 0.408 | 0.403 | 0.554 | 0.522 | 0.960 | 0.735 | 0.421 | 0.415 | 0.417 | 0.413 | 0.433 | 0.432 | |
Avg | 0.275 | 0.322 | 0.278 | 0.325 | 0.288 | 0.332 | 0.282 | 0.330 | 0.286 | 0.327 | 0.281 | 0.326 | 0.757 | 0.610 | 0.358 | 0.404 | 0.291 | 0.333 | 0.350 | 0.401 | 0.571 | 0.537 | 0.305 | 0.349 | 0.306 | 0.347 | 0.327 | 0.371 | |
ETTh1 | 96 | 0.366 | 0.392 | 0.381 | 0.401 | 0.386 | 0.405 | 0.382 | 0.398 | 0.386 | 0.395 | 0.414 | 0.419 | 0.423 | 0.448 | 0.479 | 0.464 | 0.384 | 0.402 | 0.386 | 0.400 | 0.654 | 0.599 | 0.376 | 0.419 | 0.513 | 0.491 | 0.449 | 0.459 |
192 | 0.422 | 0.421 | 0.440 | 0.433 | 0.441 | 0.436 | 0.427 | 0.425 | 0.437 | 0.424 | 0.460 | 0.445 | 0.471 | 0.474 | 0.525 | 0.492 | 0.436 | 0.429 | 0.437 | 0.432 | 0.719 | 0.631 | 0.420 | 0.448 | 0.534 | 0.504 | 0.500 | 0.482 | |
336 | 0.440 | 0.438 | 0.501 | 0.462 | 0.487 | 0.458 | 0.465 | 0.445 | 0.479 | 0.446 | 0.501 | 0.466 | 0.570 | 0.546 | 0.565 | 0.515 | 0.491 | 0.469 | 0.481 | 0.459 | 0.778 | 0.659 | 0.459 | 0.465 | 0.588 | 0.535 | 0.521 | 0.496 | |
720 | 0.463 | 0.462 | 0.501 | 0.482 | 0.503 | 0.491 | 0.472 | 0.468 | 0.481 | 0.470 | 0.500 | 0.488 | 0.653 | 0.621 | 0.594 | 0.558 | 0.521 | 0.500 | 0.519 | 0.516 | 0.836 | 0.699 | 0.506 | 0.507 | 0.643 | 0.616 | 0.514 | 0.512 | |
Avg | 0.422 | 0.428 | 0.458 | 0.445 | 0.454 | 0.447 | 0.437 | 0.434 | 0.446 | 0.434 | 0.469 | 0.454 | 0.529 | 0.522 | 0.541 | 0.507 | 0.458 | 0.450 | 0.456 | 0.452 | 0.747 | 0.647 | 0.440 | 0.460 | 0.570 | 0.537 | 0.496 | 0.487 | |
ETTh2 | 96 | 0.281 | 0.338 | 0.292 | 0.343 | 0.297 | 0.349 | 0.309 | 0.359 | 0.288 | 0.338 | 0.302 | 0.348 | 0.745 | 0.584 | 0.400 | 0.440 | 0.340 | 0.374 | 0.333 | 0.387 | 0.707 | 0.621 | 0.358 | 0.397 | 0.476 | 0.458 | 0.346 | 0.388 |
192 | 0.355 | 0.387 | 0.374 | 0.395 | 0.380 | 0.400 | 0.390 | 0.406 | 0.374 | 0.390 | 0.388 | 0.400 | 0.877 | 0.656 | 0.528 | 0.509 | 0.402 | 0.414 | 0.477 | 0.476 | 0.860 | 0.689 | 0.429 | 0.439 | 0.512 | 0.493 | 0.456 | 0.452 | |
336 | 0.365 | 0.401 | 0.428 | 0.433 | 0.428 | 0.432 | 0.426 | 0.444 | 0.415 | 0.426 | 0.426 | 0.433 | 1.043 | 0.731 | 0.643 | 0.571 | 0.452 | 0.452 | 0.594 | 0.541 | 1.000 | 0.744 | 0.496 | 0.487 | 0.552 | 0.551 | 0.482 | 0.486 | |
720 | 0.413 | 0.436 | 0.454 | 0.458 | 0.427 | 0.445 | 0.445 | 0.444 | 0.420 | 0.440 | 0.431 | 0.446 | 1.104 | 0.763 | 0.874 | 0.679 | 0.462 | 0.468 | 0.831 | 0.657 | 1.249 | 0.838 | 0.463 | 0.474 | 0.562 | 0.560 | 0.515 | 0.511 | |
Avg | 0.353 | 0.391 | 0.384 | 0.407 | 0.383 | 0.407 | 0.393 | 0.413 | 0.374 | 0.398 | 0.387 | 0.407 | 0.942 | 0.684 | 0.611 | 0.550 | 0.414 | 0.427 | 0.559 | 0.515 | 0.954 | 0.723 | 0.437 | 0.449 | 0.526 | 0.516 | 0.450 | 0.459 | |
ECL | 96 | 0.141 | 0.235 | 0.153 | 0.244 | 0.148 | 0.240 | 0.173 | 0.275 | 0.201 | 0.281 | 0.181 | 0.270 | 0.219 | 0.314 | 0.237 | 0.329 | 0.168 | 0.272 | 0.197 | 0.282 | 0.247 | 0.345 | 0.193 | 0.308 | 0.169 | 0.273 | 0.201 | 0.317 |
192 | 0.151 | 0.247 | 0.166 | 0.256 | 0.162 | 0.253 | 0.195 | 0.288 | 0.201 | 0.283 | 0.188 | 0.274 | 0.231 | 0.322 | 0.236 | 0.330 | 0.184 | 0.289 | 0.196 | 0.285 | 0.257 | 0.355 | 0.201 | 0.315 | 0.182 | 0.286 | 0.222 | 0.334 | |
336 | 0.173 | 0.267 | 0.184 | 0.275 | 0.178 | 0.269 | 0.206 | 0.300 | 0.215 | 0.298 | 0.204 | 0.293 | 0.246 | 0.337 | 0.249 | 0.344 | 0.198 | 0.300 | 0.209 | 0.301 | 0.269 | 0.369 | 0.214 | 0.329 | 0.200 | 0.304 | 0.231 | 0.338 | |
720 | 0.201 | 0.293 | 0.226 | 0.313 | 0.225 | 0.317 | 0.231 | 0.335 | 0.257 | 0.331 | 0.246 | 0.324 | 0.280 | 0.363 | 0.284 | 0.373 | 0.220 | 0.320 | 0.245 | 0.333 | 0.299 | 0.390 | 0.246 | 0.355 | 0.222 | 0.321 | 0.254 | 0.361 | |
Avg | 0.166 | 0.260 | 0.178 | 0.270 | 0.201 | 0.300 | 0.219 | 0.298 | 0.205 | 0.290 | 0.244 | 0.334 | 0.251 | 0.344 | 0.192 | 0.295 | 0.212 | 0.300 | 0.268 | 0.365 | 0.214 | 0.327 | 0.193 | 0.296 | 0.227 | 0.338 | |||
Weather | 96 | 0.162 | 0.207 | 0.165 | 0.212 | 0.174 | 0.214 | 0.159 | 0.218 | 0.192 | 0.232 | 0.177 | 0.218 | 0.158 | 0.230 | 0.202 | 0.261 | 0.172 | 0.220 | 0.196 | 0.255 | 0.221 | 0.306 | 0.217 | 0.296 | 0.173 | 0.223 | 0.266 | 0.336 |
192 | 0.208 | 0.248 | 0.209 | 0.253 | 0.221 | 0.254 | 0.211 | 0.266 | 0.240 | 0.271 | 0.225 | 0.259 | 0.206 | 0.277 | 0.242 | 0.298 | 0.219 | 0.261 | 0.237 | 0.296 | 0.261 | 0.340 | 0.276 | 0.336 | 0.245 | 0.285 | 0.307 | 0.367 | |
336 | 0.263 | 0.290 | 0.264 | 0.293 | 0.278 | 0.296 | 0.267 | 0.310 | 0.292 | 0.307 | 0.278 | 0.297 | 0.272 | 0.335 | 0.287 | 0.335 | 0.280 | 0.306 | 0.283 | 0.335 | 0.309 | 0.378 | 0.339 | 0.380 | 0.321 | 0.338 | 0.359 | 0.395 | |
720 | 0.340 | 0.341 | 0.342 | 0.345 | 0.358 | 0.347 | 0.352 | 0.362 | 0.364 | 0.353 | 0.354 | 0.348 | 0.398 | 0.418 | 0.351 | 0.386 | 0.365 | 0.359 | 0.345 | 0.381 | 0.377 | 0.427 | 0.403 | 0.428 | 0.414 | 0.410 | 0.419 | 0.428 | |
Avg | 0.243 | 0.271 | 0.245 | 0.276 | 0.258 | 0.278 | 0.247 | 0.289 | 0.272 | 0.291 | 0.259 | 0.281 | 0.259 | 0.315 | 0.271 | 0.320 | 0.259 | 0.287 | 0.265 | 0.317 | 0.292 | 0.363 | 0.309 | 0.360 | 0.288 | 0.314 | 0.338 | 0.382 | |
Traffic | 96 | 0.410 | 0.274 | 0.464 | 0.289 | 0.395 | 0.268 | 0.570 | 0.310 | 0.649 | 0.389 | 0.462 | 0.295 | 0.522 | 0.290 | 0.805 | 0.493 | 0.593 | 0.321 | 0.650 | 0.396 | 0.788 | 0.499 | 0.587 | 0.366 | 0.612 | 0.338 | 0.613 | 0.388 |
192 | 0.430 | 0.280 | 0.477 | 0.292 | 0.417 | 0.276 | 0.577 | 0.321 | 0.601 | 0.366 | 0.466 | 0.296 | 0.530 | 0.293 | 0.756 | 0.474 | 0.617 | 0.336 | 0.598 | 0.370 | 0.789 | 0.505 | 0.604 | 0.373 | 0.613 | 0.340 | 0.616 | 0.382 | |
336 | 0.449 | 0.290 | 0.500 | 0.305 | 0.433 | 0.283 | 0.588 | 0.324 | 0.609 | 0.369 | 0.482 | 0.304 | 0.558 | 0.305 | 0.762 | 0.477 | 0.629 | 0.336 | 0.605 | 0.373 | 0.797 | 0.508 | 0.621 | 0.383 | 0.618 | 0.328 | 0.622 | 0.337 | |
720 | 0.486 | 0.309 | 0.548 | 0.313 | 0.467 | 0.302 | 0.597 | 0.337 | 0.647 | 0.387 | 0.514 | 0.322 | 0.589 | 0.328 | 0.719 | 0.449 | 0.640 | 0.350 | 0.645 | 0.394 | 0.841 | 0.523 | 0.626 | 0.382 | 0.653 | 0.355 | 0.660 | 0.408 | |
Avg | 0.444 | 0.289 | 0.497 | 0.300 | 0.428 | 0.282 | 0.583 | 0.323 | 0.626 | 0.378 | 0.481 | 0.304 | 0.550 | 0.304 | 0.760 | 0.473 | 0.620 | 0.336 | 0.625 | 0.383 | 0.804 | 0.509 | 0.610 | 0.376 | 0.624 | 0.340 | 0.628 | 0.379 | |
Solar-Energy | 96 | 0.163 | 0.232 | 0.215 | 0.294 | 0.203 | 0.237 | 0.222 | 0.301 | 0.322 | 0.339 | 0.234 | 0.286 | 0.310 | 0.331 | 0.312 | 0.399 | 0.250 | 0.292 | 0.290 | 0.378 | 0.237 | 0.344 | 0.242 | 0.342 | 0.215 | 0.249 | 0.884 | 0.711 |
192 | 0.182 | 0.247 | 0.237 | 0.275 | 0.233 | 0.261 | 0.246 | 0.307 | 0.359 | 0.356 | 0.267 | 0.310 | 0.734 | 0.725 | 0.339 | 0.416 | 0.296 | 0.318 | 0.320 | 0.398 | 0.280 | 0.380 | 0.285 | 0.380 | 0.254 | 0.272 | 0.834 | 0.692 | |
336 | 0.193 | 0.257 | 0.252 | 0.298 | 0.248 | 0.273 | 0.263 | 0.324 | 0.397 | 0.369 | 0.290 | 0.315 | 0.750 | 0.735 | 0.368 | 0.430 | 0.319 | 0.330 | 0.353 | 0.415 | 0.304 | 0.389 | 0.282 | 0.376 | 0.290 | 0.296 | 0.941 | 0.723 | |
720 | 0.199 | 0.252 | 0.244 | 0.293 | 0.249 | 0.275 | 0.265 | 0.318 | 0.397 | 0.356 | 0.289 | 0.317 | 0.769 | 0.765 | 0.370 | 0.425 | 0.338 | 0.337 | 0.356 | 0.413 | 0.308 | 0.388 | 0.357 | 0.427 | 0.285 | 0.295 | 0.882 | 0.717 | |
Avg | 0.184 | 0.247 | 0.237 | 0.290 | 0.233 | 0.262 | 0.249 | 0.313 | 0.369 | 0.356 | 0.270 | 0.307 | 0.641 | 0.639 | 0.347 | 0.417 | 0.301 | 0.319 | 0.330 | 0.401 | 0.282 | 0.375 | 0.291 | 0.381 | 0.261 | 0.381 | 0.885 | 0.711 |
All datasets have been preprocessed and are ready for use. You can obtain them from their original sources:
- ETT: https://github.com/zhouhaoyi/ETDataset/tree/main
- Traffic, Electricity, Weather: https://github.com/thuml/Autoformer
- Solar: https://github.com/laiguokun/LSTNet
- PEMS: https://github.com/cure-lab/SCINet
For convenience, we provide a comprehensive package containing all required datasets, available for download from Google Drive. You can place it under the folder ./dataset.
Choose one of the following methods to set up your environment:
Create and activate a Python environment using the provided configuration file environment.yml:
conda env create -f environment.yml -n SimpleTM
conda activate SimpleTM
If you prefer Docker, build an image using the provided Dockerfile:
docker build --tag simpletm:latest .
Experiment scripts for various benchmarks are provided in the scripts
directory. You can reproduce experiment results as follows:
bash ./scripts/multivariate_forecasting/ETT/SimpleTM_h1.sh # ETTh1
bash ./scripts/multivariate_forecasting/ECL/SimpleTM.sh # Electricity
bash ./scripts/long_term_forecast/SolarEnergy/SimpleTM.sh # Solar-Energy
bash ./scripts/long_term_forecast/Weather/SimpleTM.sh # Weather
bash ./scripts/short_term_forecast/PEMS/SimpleTM_03.sh # PEMS03
If you're using Docker, run the scripts with the following command structure (example for ETTh1):
docker run --gpus all -it --rm --ipc=host \
--user $(id -u):$(id -g) \
-v "$(pwd)":/scratch --workdir /scratch -e HOME=/scratch \
simpletm:latest \
bash scripts/multivariate_forecasting/ETT/SimpleTM_h1.sh
To provide an efficiency comparison, we evaluated our model against two of the most competitive baselines: the transformer-based iTransformer and linear-based TimeMixer. Our experimental setup used a consistent batch size of 256 across all models and measured four key metrics: total trainable parameters, inference time, GPU memory footprint, and peak memory usage during the backward pass. Results for all baseline models were compiled using PyTorch.
Please note that our default experimental configuration does not employ compilation optimizations. To speed up, enable the --compile flag in the scripts.
Dataset | Model | MSE | Total Params | Inference Time (s) | GPU Mem Footprint (MB) | Peak Mem (MB) |
---|---|---|---|---|---|---|
Weather | SimpleTM | 0.162 | 13,472 | 0.0132 | 994 | 181.75 |
TimeMixer | 0.164 | 104,433 | 0.0453 | 2,954 | 2,281.38 | |
iTransformer | 0.176 | 4,833,888 | 0.0222 | 1,596 | 847.62 | |
Solar | SimpleTM | 0.163 | 166,304 | 0.0455 | 2,048 | 1,181.56 |
TimeMixer | 0.215 | 13,009,079 | 0.2644 | 7,576 | 6,632.40 | |
iTransformer | 0.203 | 3,255,904 | 0.0663 | 4,022 | 2,776.50 |
We appreciate the following GitHub repos a lot for their valuable code and efforts.
- Time-Series-Library (https://github.com/thuml/Time-Series-Library)
- iTransformer (https://github.com/thuml/iTransformer)
- TimeMixer (https://github.com/kwuking/TimeMixer)
- Autoformer (https://github.com/thuml/Autoformer)
If you find this repo helpful, please cite our paper.
@inproceedings{
chen2025simpletm,
title={Simple{TM}: A Simple Baseline for Multivariate Time Series Forecasting},
author={Hui Chen and Viet Luong and Lopamudra Mukherjee and Vikas Singh},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=oANkBaVci5}
}